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Abstract 

Coronary artery disease (CAD), the leading cause of morbidity and mortality worldwide, is a consequence of the 

interaction of numerous genetic, epigenetic, and environmental factors. Many genes have been recognized by genomic research to 

contribute to CAD risk through single-nucleotide polymorphisms (SNPs) and copy number variations (CNVs). Epigenetic 

modifications like DNA methylation, histone adjustments, and non-coding RNAs control gene expression following contact with 

environmental stressors. This literature review consolidates available evidence on the genomic and epigenetic determinants of 

CAD and their diagnostic, predictive, and therapeutic implications. An exhaustive search was conducted on PubMed, Scopus, and 

Web of Science using keywords such as "coronary artery disease" AND "genomics," "epigenetics" AND "CAD," and "DNA 

methylation" AND "cardiovascular disease," between 2015 and 2025. Genetic loci such as 9p21, PCSK9, and APOE have strong 

association with CAD susceptibility, and epigenetic changes such as hypermethylation of lipid metabolism genes and disruption 

of microRNAs contribute to disease pathology. Evidence is highly suggestive of the diagnostic utility of epigenetic biomarkers 

and polygenic risk scores (PRS), and PRS has the potential to predict CAD risk with up to 80% specificity in high-risk subjects. 

However, barriers in the shape of genetic heterogeneity, epigenetic assay heterogeneity, and sparse longitudinal data pose an 

impediment to clinical use. Therapies targeting epigenetic changes, such as microRNA mimics and conditional histone 

deacetylase inhibitors, are promising but require validation. This review emphasizes the core contribution of genomics to CAD 

epigenetics, emphasizing the need for standardised assays, combined omics strategies, and large-scale prospective cohorts to 

enhance precision medicine. 
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1. Introduction 

 

Coronary artery disease (CAD), characterized by 

the atherosclerotic accumulation of plaque within coronary 

arteries, is one of the principal causes of worldwide 

cardiovascular mortality, accounting for approximately 9 

million deaths annually [1]. Conventional risk factors like 

hypertension, dyslipidemia, smoking, and diabetes explain 

only a fraction of CAD risk, and more and more evidence 

suggests genetic and epigenetic factors as principal drivers 

[2]. Genomic analysis, particularly genome-wide association 

studies (GWAS), has identified over 160 loci associated 

with CAD, and the strongest replicated locus is on 9p21 [3]. 

Gene expression is controlled by epigenetic processes, such 

as DNA methylation, histone modification, and non-coding 

RNAs (microRNAs and long non-coding RNAs), without 

altering DNA sequences, acting as mediators of 

environmental impact on genetic susceptibility [4]. These 

mechanisms underlie major pathological processes in CAD, 

including endothelial dysfunction, smooth muscle cell 

proliferation, and inflammation [5]. 

The integration of genomic and epigenetic data has 

transformed CAD from a relatively lifestyle-predisposed 

condition to a disease with molecular targets that are 

actionable [6]. Polygenic risk scores (PRS), which aggregate 

the effects of multiple SNPs, have become powerful risk 

stratifiers, while epigenetic markers give hints towards 

disease progression and drug tolerance [7]. However, there 

are issues that include genetic variation between 

populations, variation in epigenetic assay sensitivity, and the 

complexity of gene-environment interaction [8]. Novel 

epigenetic therapies, such as histone deacetylase (HDAC) 

inhibitors and microRNA-targeting therapies, are promising 

but face challenges to clinical application [9]. This review 

aims to synthesize the latest data on the genomic and 

epigenetic determinants of CAD, discussing their diagnostic 

utility, clinical correlations, prognostic significance, and 

therapeutic potential, with a focus on areas of uncertainty 

and future directions. 

2. Review 

2.1 Genomic influences on Coronary Artery Disease 

2. 1.1 Established genetic variants 

 

Genome-wide studies identified numerous genetic 

variants associated with CAD. The strongest CAD-

associated locus is on 9p21, which contains CDKN2A and 

International Journal of Chemical and Biochemical Sciences  
(ISSN 2226-9614) 

 

Journal Home page: www.iscientific.org/Journal.html 

 

© International Scientific Organization 
 

mailto:ramyrashedmohamed@yahoo.com
http://www.iscientific.org/Journal.html


International Journal of Chemical and Biochemical Sciences (IJCBS), 27(21) (2025): 145-150 

 

Abdelkader and Almubarak., 2025     146 
 

CDKN2B genes; SNPs such as rs1333049 increase CAD 

risk by 20–30% per allele [10]. These genes regulate cell 

cycle progression and smooth muscle growth in vessels, 

critical processes involved in atherosclerosis [11]. PCSK9 

gene variants coding for proprotein convertase 

subtilisin/kexin type 9 are implicated in low-density 

lipoprotein cholesterol (LDL-C) concentration and CAD 

risk, with loss-of-function variants decreasing risk up to 

40% [12]. The APOE gene, and more so the ε4 allele, is 

implicated in dyslipidemia and 1.5-fold increased CAD risk 

[13]. GWAS have also identified variants in genes for 

inflammation (IL6R), thrombosis (F5), and endothelial 

function (NOS3) to highlight the polygenic nature of CAD 

[14]. 

2.1.2 Rare variants and copy number variations 

 

Besides common SNPs, rare variants and CNVs are 

involved in CAD susceptibility. Rare mutations in APOB 

and LDLR that lead to familial hypercholesterolemia and 

early CAD have been discovered using whole-exome 

sequencing [15]. CNVs in the 1q21 and 16p13.11 loci that 

impinge on lipid metabolism and inflammation genes are 

detected in 5–10% of CAD cases [16]. The findings 

demonstrate the utility of genomic profiling of rare variants 

in accounting for CAD risk. 

2.1.3 Polygenic risk scores 

 

Polygenic risk scores (PRS) aggregate the additive 

effect of multiple SNPs to predict CAD risk. Research by 

Khera et al. in 2023 demonstrated that PRS with over 6 

million SNPs were able to predict CAD in 80% of high-risk 

individuals accurately better than traditional risk factors, 

including the LDL-C level [17]. PRS are particularly 

valuable in younger age groups where traditional risk scores 

(e.g., Framingham Risk Score) are weaker [18]. However, 

PRS performance is based on ethnic groups due to genetic 

heterogeneity, with lower accuracy in non-European groups 

[19]. 

2.1.4 Diagnostic challenges 

 

Genomic testing relies on technologies like next-

generation sequencing (NGS) and SNP arrays, but the 

limitations lie in the form of high cost, penetrance 

heterogeneity, and the need for population-specific reference 

databases [20]. False negatives are present in the event of 

rare variants not found in standard panels, while false 

positives may result from benign polymorphisms [21]. 

Standardization of genomic assays and correlation with 

clinical risk factors is necessary to improve diagnostic 

accuracy. 

3. Epigenetic influences on Coronary Artery Disease 

3.1 DNA methylation 

 

DNA methylation, cytosine residue methylation, is 

among the significant epigenetic alterations in CAD. Genes 

like ABCA1, a cholesterol efflux gene, which are 

overmethylated, enhance CAD risk and occur in 60% of 

patients with acute coronary syndrome [22]. 

Hypomethylation of pro-inflammatory genes like IL6 and 

TNF enhances endothelial dysfunction and plaque instability 

[23]. A 2022 study by Zhang et al. identified methylation 

signatures in peripheral blood leukocytes that are 75% 

sensitive for CAD progression prediction [24]. Nevertheless, 

tissue-specific methylation signatures and assay-to-assay 

variation in sensitivity (e.g., bisulfite sequencing vs. 

methylation arrays) complicate clinical use [25]. 

3.2 Histone modifications 

 

Histone modifications like acetylation and 

methylation regulate chromatin accessibility and gene 

expression. Histone deacetylase 3 (HDAC3) dysregulation is 

linked to endothelial dysfunction with increased H3K27me3 

marks promoting vascular inflammation [26]. Histone 

acetyltransferase (HAT) inhibitors reduced atherosclerotic 

plaque burden by 30% in mice models, suggesting 

therapeutic potential in a 2021 paper by Chen et al. [27]. 

However, non-selective effects of histone-modifying drugs 

limit their use in the clinic [28]. 

3.3 Non-Coding RNAs 

 

Non-coding RNAs, particularly microRNAs 

(miRNAs) and long non-coding RNAs (lncRNAs), play a 

central role in CAD. Lipid metabolism-regulating miR-33 is 

overexpressed in atherosclerotic plaques, while endothelial 

repair function is maintained by underexpression of miR-

126 in CAD [29]. lncRNAs like ANRIL, encoded at the 

9p21 locus, regulates atherosclerosis by regulating 

CDKN2A/B expression [30]. A 2024 meta-analysis has 

quoted that miRNA panels (e.g., miR-133a, miR-208b) 

predict acute myocardial infarction with 85% specificity 

[31]. However, miRNA analysis from plasma is troubled by 

degradation and low abundance [32]. 

3.4 Epigenetic biomarkers 

 

Epigenetic biomarkers such as methylation status 

and miRNA profiles carry prognostic and diagnostic 

significance. Li et al. in 2023 designed an epigenetic risk 

score incorporating methylation and miRNA data with 78% 

accuracy in CAD event prediction [33]. They are 

particularly useful for diagnosing subclinical 

atherosclerosis, when conventional imaging can be useless 

[34]. However, tissue-to-tissue heterogeneity of epigenetic 

signatures and environmental influences (e.g., diet, 

smoking) render them hard to standardize [35]. 

4. Clinical and prognostic implications 

4.1 Clinical phenotypes 

 

Genomic and epigenetic patterns characterize CAD 

presentation. PCSK9 and LDLR variants predispose to 

early-onset CAD and hypercholesterolemia, while 9p21 

variants impart susceptibility to plaque rupture and acute 

coronary syndromes [36]. Epigenetic changes, such as 

hypermethylation of ABCA1, are more prevalent in patients 

with unstable angina, which is associated with higher rates 

of recurrent events [37]. Downregulation of miR-126 is 

associated with endothelial dysfunction and stent restenosis 

in 15–20% of patients after angioplasty [38]. 

4.2 Prognostic significance 

 

Genetic and epigenetic markers yield prognostic 

information. An elevated PRS predicts a 2-fold greater risk 

of major adverse cardiovascular events (MACE) over 5 

years [17]. Increased methylation of IL6 and low miR-126 

are associated with poor outcomes, such as a 30% increased 

risk of myocardial infarction [39]. Longitudinal research 

indicates that repeated epigenetic changes after treatment are 
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predictive of recurrent events, with 25% of patients 

maintaining stable patterns of methylation on 1-year follow-

up [40]. 

4.3 Heritable vs. environmental contributions 

 

CAD risk is a compromise between heritability and 

environment. Genomic loci like 9p21 confer immutable risk, 

while epigenetic changes can be reversed, which are induced 

by lifestyle factors like smoking (inducing TNF 

hypomethylation) and diet (altering miR-33 levels) [41]. 

Separation between heritable and modifiable risk through 

integrated omics profiling is crucial for personalized 

prevention strategies. 

5. Mechanisms of genomic and epigenetic pathology 

 

Genomic CAD variants interfere with key 

pathways, including lipid metabolism (PCSK9, LDLR), 

inflammation (IL6R), and thrombosis (F5) [42]. PCSK9 

variants, for example, augment LDL receptor degradation, 

increasing circulating LDL-C and promoting atherosclerosis 

[12]. Epigenetic mechanisms amplify these processes: 

ABCA1 hypermethylation reduces cholesterol efflux, and 

miR-33 upregulation inhibits HDL biogenesis [43]. Histone 

modifications, such as H3K27me3, enhance inflammatory 

gene expression, promoting macrophage infiltration of 

plaques [44]. lncRNAs like ANRIL control chromatin 

remodeling, promoting CDKN2A/B-induced atherosclerosis 

[30]. These mechanisms highlight the collaborative interplay 

of genomics and epigenetics in CAD development. 

6. Therapeutic implications and challenges 

6.1 Genomic-Based therapies 

 

Genetic discoveries have raised directed therapies, 

such as PCSK9 inhibitors (e.g., evolocumab), that reduce 

LDL-C by 60% and CAD events by 15% in high-risk 

patients [45]. Gene editing reagents, including CRISPR-

Cas9, are being explored to correct LDLR gene mutations in 

familial hypercholesterolemia, with proof-of-concept in 

animal models showing 50% decreases in LDL-C [46]. Off-

target effects, however, and moral concerns limit their 

utilization currently [47]. 

6.2 Epigenetic therapies 

 

Epigenetic drugs, including HDAC inhibitors (e.g., 

vorinostat) and miRNA mimics, are under investigation. 

Wang et al.'s 2023 trial proved that miR-126 mimics 

reduced endothelial dysfunction in CAD patients by 25% 

[48]. BET inhibitors, targeting histone acetylation, were 

promising in reducing plaque inflammation in animal 

models [49]. Non-specific effects and toxicity remain issues 

[50]. 

6.3 Challenges 

 

Therapies are responsive to genomic and epigenetic 

subtype, and to agreed protocols. PCSK9 inhibitors are 

second-best in carriers of specific APOE alleles, and 

epigenetic therapies are hampered by specificity and 

delivery issues [51]. There is little long-term safety data for 

epigenetic drugs, and there is a 10% risk of infection [52]. 

Developing personalized algorithms for treatment that 

include genomic and epigenetic data is a priority. 

7. Limitations and future directions 

7.1 Current limitations 

Genomic and epigenetic studies are faced with 

challenges like genetic heterogeneity across populations, 

variability of sensitivity across epigenetic assays, and small 

sample sizes (50–200 patients in most of the studies) [53]. 

Longitudinal epigenetic change data are scarce, particularly 

for rare variants and lncRNAs [54]. Clinical presentation 

overlap, such as chest pain between CAD and non-cardiac 

disease, renders biomarker utility challenging [55]. 

7.2 Future research 

 

Large-scale, multi-ethnic GWAS and EWAS are 

needed to validate biomarkers and improve PRS in mixed 

populations. Multiscale, multi-omics integration (genomics, 

epigenomics, transcriptomics) with machine learning would 

enhance risk prediction and therapeutic intervention. 

Prospective studies comparing dynamic epigenetic changes 

longitudinally and their response to lifestyle intervention are 

a priority. RCTs of epigenetic therapy, e.g., miRNA mimics, 

are needed to establish efficacy and safety. 

7.3 Clinical implications 

 

Regular epigenetic and genomic profiling, 

including PRS and methylation panels, need to be integrated 

into CAD risk assessment. Point-of-care epigenetic testing 

may reduce diagnostic time. Patient registries and biobanks 

will enable large-scale omics research and personalized 

medicine approaches. 

8. Conclusion 

 

Genomic and epigenetic influences have 

revolutionized our understanding of coronary artery disease, 

with genetic loci like 9p21 and PCSK9, and epigenetic 

changes like ABCA1 methylation and miR-126 

dysregulation, guiding risk stratification and treatment 

planning. Polygenic risk scores and epigenetic biomarkers 

are very diagnostic and prognostic but raise concerns 

regarding assay standardization, genetic heterogeneity, and 

therapeutic specificity. Advances in multi-omics integration, 

standardization of assays, and novel therapies offer 

precision cardiology, which is capable of enabling earlier 

diagnosis and tailored treatments to reduce the global 

burden of CAD. 
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