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Abstract 

  Monitoring wastewater treatment plants (WWTPs) holds immense significance in safeguarding water quality and 

promoting environmental sustainability, especially in the face of escalating water scarcity. However, a significant challenge arises 

from missing data, creating a hurdle in establishing an optimal operational framework for WWTPs. This paper focuses on selecting 

suitable missing data imputation methods for wastewater quality parameters: Chemical Oxygen Demand (COD), Biochemical 

Oxygen Demand over 5 days (BOD5), and Total Suspended Solids (TSS). Linear trend imputation is found effective for TSS, while 

Expectation-Maximization (EM) is preferred for COD and BOD5. Imputation reveals pollutant loads surpassing the thresholds 

defined by the initial design criteria, prompting a reevaluation of Imintanoute WWTP’s design and performance analysis. Overall, 

the paper propose an updated WWTP’s configuration with pre-treatment and parallel secondary treatment lines, validated through 

modeling with SUMO22 software, that improves efficiencies by 5.59% for COD, 2.88% for TSS, and 7.37% for BOD5, while 

adhering to wastewater discharge standards. 
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1. Introduction 

In response to urgent global imperatives regarding 

water scarcity, the advancement of wastewater treatment 

processes (WWTPs) has become indispensable to preserve 

water resources [11]. Monitoring WWTP performance play a 

pivotal role in addressing not only increasing safety 

requirements but also ensuring efficient operations and 

compliance with environmental and health regulations 

[12,23]. Consequently, real-time information provides 

valuable insights for studying WWTP changes over time. 

This is crucial for predicting wastewater quality, evaluating 

the environment, and managing water resources [2,10,16]. 

However, an ongoing challenge in real-time wastewater 

quality monitoring is the issue of missing data. This occurs 

due to various reasons, such as the absence of measurements, 

loss of recorded data, or considering available data as 

unsuitable [19,23,26]. Technical problems like network 

issues, communication errors, and interruptions in data 

transmission also affect the completeness of data [15]. 

Ignoring missing data, especially in the field of wastewater 

treatment, can lead to faulty conclusions, loss of precision and 

bias in analysis models [12]. Furthermore, it hampers the 

effectiveness of various modeling approaches that require 

complete information for all relevant variables [25].  

 

 

In this context, imputation methods emerge as a potential 

solution to this issue. It involves filling in missing values with 

reasonable estimates [19,20]. The field of imputation has 

been extensively studied and continues to be a focus of 

ongoing research. However, pinpointing the most effective 

imputation method for specific water quality variables proves 

to be a challenging task. 

The primary contributions of this paper can be outlined as 

follows: 

1. Comparative Analysis of Missing Data Imputation 

Methods: this paper conducts a comparative analysis of 

diverse techniques for imputing missing data. This 

analysis aims to identify the most suitable imputation 

method for specific water quality variables. 

2. Wastewater Plant redesign: This redesign process 

based on the results of the imputation process, is guided 

by two established frameworks: the METCALF and 

EDDY guidelines [17], as well as the ATV-DVWK-

A281, 2001 standard [7]. This step in necessary for 

making enhancements to the plant's configuration to 

optimize its overall efficiency. 

3. Optimal Treatment Scenario Selection: Via advanced 

modeling tools such as SUMO22, this paper performs an 

evaluation of various treatment scenarios. Through this 
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analysis, this contribution select the most optimal 

treatment scenario that attains the desired purification 

performance objectives effectively. 

 

2. Materials and Methods  
In this section, the paper build a systematic 

framework to outline the progression of critical steps of the 

WWTP analysis encompassing missing data imputation, 

WWTP redesign and WWTP modeling (Fig.1). 

 

2.1. Study Site Description 

The study site is a WWTP in Imintanoute City, 

Chichaoua Province, Morocco. The selected WWTP, 

designed in 2017, serves a population of 31,000 and treats up 

to 1,720 m3/day of municipal wastewater by 2025. The 

wastewater treatment process consisted of pre-treatment 

(screens), a grit chamber, anaerobic tanks and trickling filters. 

The biological treatment system was followed by a secondary 

clarifier before discharge as the final effluent. The influent 

designated for treatment emanates from the wastewater 

system serving the municipality of Imintanoute. Table 1 

displays the statistical data encompassing the water quality of 

influent and effluent designated for the wastewater treatment 

plant in Imintanoute. 

 

2.2. Water quality monitoring data 

Monitoring the treatment processes of Imintanoute’s 

WWTP for a significant period, from October 15, 2018 to 

October 15, 2019, has enabled us to collect a database 

containing several wastewater quality parameters (TSS, COD 

and BOD5). However, it is crucial to highlight that a 

significant proportion of the dataset is incomplete, with 

71.9% of BOD5 values, 59% of TSS values, and 59% of COD 

records being missing. The missing data presents a 

considerable challenge in comprehensively assessing the 

operational efficacy of the plant. 

 

2.3. Missing data imputation  

Numerous imputation methods have been developed 

over the years to solve the problem of missing values but first 

it is essential to start by identifying the type of data missing. 

In this paper case, IBM SPSS software is used to carry out 

this statistical imputation work. The IBM® SPSS® Missing 

Values module enables to manage missing data by 

simplifying the estimation of synthetic statistics and the 

application of imputation methods using advanced statistical 

algorithms. 

 

2.3.1. Types of missing data 

Missing data can be classified into three categories, according 

to Little & Rubin (1987) [18]: 

• MCAR (missing completely at random): This type 

occurs when the locations of missing values in the 

data set are purely random. In other words, the 

absence of data from one variable has no relation to 

the missing values of that variable or the data from 

other variables, i.e., the probability of absence is the 

same for all variables. This probability therefore 

depends only on external parameters independent of 

that variable [20]. 

• MAR (Missing at random): This occurs when the 

location of missing values in the data set depends on 

other observed data. Thus, data are not missing 

completely at random; if the probability of absence 

is related to one or more other observed variables 

[20]. 

• MNAR (Missing not at random): This type of 

missing data occurs when the location of the missing 

values in the data set depends on the missing values 

themselves, i.e. the probability of absence depends 

on the variable in question [19]. 

 

2.3.2. Imputation methods  

• Mean Imputation 

Mean imputation consists in replacing each missing value of 

a variable by the mean value of the set of responses obtained 

for the same variable. 

• Median imputation of neighboring points  

The median imputation method for neighboring points 

replaces missing values with the median of the valid values 

surrounding them. The neighboring point interval is the 

number of valid values above and below the missing value 

used to calculate the median  

• Linear interpolation imputation  

This imputation method involves replacing missing values by 

linear interpolation. The last valid value before the missing 

value and the first valid value after the missing value are used 

for interpolation. If the first or last observation in the series 

contains a missing value, it is not replaced. 

• Imputation by linear point trend  

The method of replacing missing values by the linear trend at 

the point consists in estimating missing values based on the 

linear relationship existing at this specific point. In this way, 

it seeks to exploit the linear trend observed at the point 

concerned to make an appropriate estimate. 

• Imputation by Expectation-Maximization (EM):  

This method assumes a distribution for partially missing data 

and uses this distribution to make inferences. Each iteration 

of the process comprises an E step (Expectation) and an M 

step (Maximization). 

Step E aims to conditionally estimate "missing" values based 

on observed values and current parameter estimates. These 

conditional estimates are then substituted for the "missing" 

values. In step M, the maximum likelihood estimates of the 

parameters are calculated on the assumption that the missing 

data have been filled. 

• Linear regression imputation  

This method implements several linear regression estimates, 

and can improve estimates by using random components. For 

each predicted value, the procedure has the option of adding 

a residual from a randomly selected complete observation, a 

random deviation according to a normal distribution, or a 

random deviation (adjusted according to the square root of 

the mean of the squares of the residuals) from a t-shaped 

distribution. This approach makes it possible to take account 

of uncertainty and variability in estimates, by integrating 

random elements into the prediction process. 

 

 

 

2.3.3. Evaluation Metrics for Imputation Methods 

The performance of the recovering missing data is 

assessed based on the mean Absolute Error (MAE), the Mean 
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Squared Error (MSE) and the Root Mean Squared Error 

(RMSE). 
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Where 𝒚
𝒊
 and 𝒚̂

𝒊
 are the original and the predicted values of 

the water quality variable y and N is the total number of 

observations. 

 

2.3. WWTPs redesign  

The redesign of the Imintanoute’s WWTP adheres 

to the guidelines specified in the METCALF and EDDY 

reference [17], along with the ATV-DVWK-A281, 2001 

standard [7]. These well-established standards provide a 

methodological framework essential for adapting treatment 

plants to specific requirements and optimizing their 

purification performance. 

 

2.4. WWTPs Modeling  

2.4.1. Modeling Approach 

Sumo22, developed by the company Dynamita, is a 

robust, open-source, and versatile simulation software 

designed for environmental modeling, with a particular focus 

on the modeling of municipal and industrial wastewater 

treatment plants [9]. 

To effectively model the operation of a wastewater treatment 

plant in SUMO22, a systematic approach involves the 

following series of methodical steps [9]: 

• Configuration: This initial phase entails defining the 

structural layout of the treatment plant that will be 

represented within the model. This involves setting up 

the various components, such as pre-treatment structures, 

bioreactors, digesters etc., as well as the pipes connecting 

them. 
• Model: This step is optional and involves selecting the 

mathematical model to describe the biological, chemical 

and physical processes. If no parameters are changed, the 

default parameters will be used - the model will be 

functional. 

• Tools: users can select calculation parameters such as 

sludge retention time, proportional flow dependency, 

yields and others. 

• Inputs: This aspect involves inputting the plant's data, 

which can either be constant or dynamic. 

• Outputs: In this stage, the desired presentation format for 

the simulation results is defined. This can include tables, 

diagrams, charts, and other formats. 

• Simulation: This phase represents the conclusion of the 

modeling procedure, where results are presented 

according to the format selected in the previous step. It 

provides valuable insights into the functioning and the 

performance of the wastewater treatment plant as 

represented by the SUMO22 model. 

 

2.4.2. Model calibration and validation 

Since modeling is an approximation of reality, it is 

expected that some values will differ from field observations. 

The aim of calibration is not a perfect match between 

simulation results and empirical data, but rather to reduce the 

error resulting from the differences between these two sets of 

values [10]. In this paper, the key adjustment for model 

calibration revolves around the effluent fractionation, 

integrated by default into SUMO22 via the "Influent tool"[7]. 

The model chosen is based on chemical oxygen demand 

(COD), as advices by experts from Dynamita, given its role 

in measuring pollution levels.  

Fractional adjustment focuses on COD and identifies several 

COD fractions, each affecting the values of Biochemical 

Oxygen Demand (BOD5) and Total Suspended Solids (TSS). 

To ensure the precision of the calibration process and validate 

the model, a permissible margin of error has been established, 

set at ±5 mg/l for TSS and ±3 mg/l for COD [22]. 

 

3. Results and Discussion 
3.1. WWTP data imputation results 

3.1.1. Type of missing data  

To identify the type of the WWTP missing data, the chi-

square statistic (χ2) is used for Little's MCAR test [18] to 

assess whether the WWTP data (COD, TSS and BOD5) is 

missing completely at random (MCAR). The null hypothesis 

is that the data is MCAR. Rejection of the null hypothesis 

provides sufficient evidence to indicate that the data are not 

MCAR. The IBM® SPSS® Missing Values module is 

utilized to conduct the chi-square statistic (χ2) analysis for 

Little's MCAR test, yielding the resulting outcomes table 2. 

Table 2 showed that the data from the station subject to 

imputation are MCAR since the p-value is equal to 0.319, 

significantly exceeding the 0.05 threshold.  

 

3.1.2. Imputation methods results  

The imputation process, using IBM® SPSS® 

Missing Values generates substantial outcomes, given that it 

involves replacing each absent value with an estimated value, 

resulting in a total of 366 values for each variable. 

Consequently, for every method employed, the paper display 

the median value derived from all imputation results in the 

table 3: 

 

3.1.3. Comparative analysis of imputation method’s 

accuracy 

Tables 4,5 and 6 assesses the performance of six 

distinct imputation methods in estimating missing values of 

each water quality variable (TSS, COD and BOD5), using 

Mean Absolute Error (MAE), Mean Square Error (MSE) and 

Root Mean Square Error (RMSE) metrics to quantify the 

accuracy of the imputation. Notably, the comparative analysis 

of the six imputation methods demonstrates that while the 

linear point trend imputation is identified as the preferred 

technique for imputing missing values within the TSS 

variable, the Expectation-Maximization (EM) imputation 

method is particularly noteworthy for its efficacy in 

addressing missing values pertaining to the COD and BOD5 

variables. Table 7 illustrates that the pollutant load values for 
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TSS, COD, and BOD5, resulting from the imputation process 

of the dataset 2018/2019, surpass the dimensions originally 

employed for plant design. This difference underlines the 

necessity to undertake plant redesign in order to ensure the 

attainment of desired purification performance levels. It is 

important to note that the redesign flow rate is calculated as 

the median value of the observed values within the same year. 

 

3.2. WWTP redesign 

 The principal objective of this 

redesign initiative was to evaluate the treatment capacity of 

the plant regarding the loads of total suspended solids (TSS), 

chemical oxygen demand (COD), and 5-day biochemical 

oxygen demand (BOD5). Remarkably, these loads were 

found to exceed the benchmarks considered during the 

preceding design endeavor. In Table 8, the redesign of the 

Imintanoute wastewater treatment plant, predicated upon 

operational data spanning the 2018/2019 period, has yielded 

diminished dimensions across all structural components as 

compared to the original design. When comparing the 

dimensions of the plant's structures, it is imperative to note 

that an equal number of units has been retained across the 

various plant components for the purpose of this analysis. The 

disparity between the old and new configurations of the 

WWTP components can be attributed to the reduction in the 

influent flow rate, from 1,720 m³/d for the old design to 1,246 

m³/d for the new design, representing a divergence of 

27.56%. This variation, notably close to the difference 

observed for the various WWTP’s components, except the 

anaerobic ponds, where the said difference reaches 59%, 

embodies a more marked dissimilarity for this specific 

component. To address this challenge, a pertinent alternative 

strategy is proposed, entailing the retention of the existing 

plant configuration while effecting targeted adjustments. This 

proposed solution involves that one of the three anaerobic 

tanks will be temporarily deactivated. Consequently, the new 

configuration integrates pretreatment measures, succeeded by 

the establishment of two distinct treatment lines. Each of 

these treatment lines comprises an anaerobic tank, a bacterial 

bed, and a clarifier. The efficacy of this alternative approach 

remains assured until the flow attains the projected threshold 

of 2016 m³/d by the year 2035, along with the anticipated 

Biological Oxygen Demand (BOD5) load of 600 mg/l (Table 

09). Notably, this design modification would yield 

considerable reductions in the expenses associated with the 

periodic maintenance and sludge clearance from the 

decommissioned anaerobic tank, a requisite procedure 

occurring annually as required. The next step is to model the 

various WWTP configurations, using a calibrated model to 

guarantee maximum optimization of the WWTP's 

performance. 

 

3.3. WWTP modeling 

Figure 2 shows the original configuration of the 

Imintanoute’s wastewater treatment plant in the SUMO22 

modeling software interface. The paper engaged in the 

modeling of the original station's configuration utilizing two 

distinct sets of data. The initial dataset pertains to the original 

design data, while the second dataset comprises the new data 

derived from the imputation procedure conducted on the data 

for the year 2018/2019. This approach allows us to 

comprehensively analyze and compare the original WWTP 

performance under both the original and updated datasets. 

The new wastewater treatment plant in question is the 

configuration recommended in the previous section, which 

takes the form of pre-treatment followed by the presence of 

two parallel operational chains, each consisting of an 

anaerobic tank, a bacterial bed and finally a clarifier. Figure 

3 shows the new suggested configuration of the wastewater 

treatment plant in the sumo22 modeling software 

interface.The modeling of this new configuration is executed 

in two phases. Firstly, it employs the new dataset for the year 

2018/2019. Subsequently, data from table 09, represent the 

new WWTP limits, are employed to assess its efficacy in 

treating wastewater influents up to the year 2035. The results 

of the various scenarios show an appreciable degree of 

compliance with the requirements for discharge of treated 

water into the natural environment. So, in order to distinguish 

between each treated case and evaluate their performance, it 

becomes imperative to undertake a comparative analysis 

taking into consideration the concentration levels of polluting 

agents as well as their purification yields at the plant outlet.  

The effluent load concentrations (COD, BOD5 and TSS) for 

the four scenarios examined are illustrated in figure 4. For the 

old WWTP, the residual concentrations of pollutant loads 

following assimilation of the new data turn out to be of lesser 

magnitude than those observed when using the old data. This 

disparity can be attributed to the fact that, even with an 

increase in pollutant loads, the influent flow rate to the plant 

is lower than its previous level, generating no substantial 

variation. As a result, it can be concluded that the wastewater 

treatment plant (WWTP) demonstrates its ability to treat the 

wastewater received, even in the context of this increase in 

pollutant loads observed during the 2018/2019 operating 

year.  

 the new WWTP configuration, employing the new 

dataset reveals a considerable reduction in pollutant load 

concentrations at the outlet, as opposed to the previous 

models. By utilizing the projected threshold values for 2035 

(table 09), the efficacy of the new configuration in managing 

these substantial pollutant loads becomes evident. However, 

there has been an increase in effluent load concentrations, 

attributed to the notable escalation in pollutant loads. Figure 

5 shows a comparison of the performance of the different 

variants of the imintanooute plant. The new configuration of 

the Imintanoute WWTP exhibits heightened treatment 

efficiencies in contrast to the treatment outcomes previously 

documented with the plant's original design. Specifically, 

these enhancements encompass a 5.59% refinement in COD 

reduction, a 2.88% enhancement in TSS reduction, and a 

7.37% improvement in BOD5 reduction. These 

advancements underscore the pivotal significance of 

continuously monitoring wastewater characteristics 

throughout plant operation, thereby facilitating the 

optimization of plant functioning and the augmentation of 

treatment efficacy. 
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Figure 1: Systematic framework for WWTP analysis 

 

 

 

Table 1: The influent and effluent designated for the WWTP in Imintanoute 

 

Parameter Units 
designated 

value 

Influent 

flow rate m3/j 1720 

BOD5 mg/l 523 

COD mg/l 1046 

TSS mg/l 639 

Effluent 

BOD5 mg/l 50 

COD mg/l 150 

TSS mg/l 75 
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Table 2: Chi-square statistic for MCAR (χ2) results 

 

Chi-square 2,283 

DDL 2 

P-value 0,319 

 

 

Table 3: Median Values of Imputed Data across Multiple Imputation Methods 

 

Wastewater parameters TSS COD BOD5 

Mean Imputation 642,56 1151,53 603,45 

Median imputation 

of neighboring points 

620 1172 570 

Linear interpolation 

imputation 

644,515 1173,5 565 

Imputation by linear 

point trend 

632,26 1147,64 602,625 

EM imputation 642,56 1151,53 590,06 

Linear regression 

imputation 

636 1142,195 604,145 

 

 

 

Table 4: Imputation accuracy for TSS 

 

 TSS 

MAE MSE RMSE 

Mean Imputation 39,34 6613,45 81,32 

Median imputation of neighboring points 43,68 12405,94 111,38 

Linear interpolation imputation 50,24 12057,29 109,81 

Imputation by linear point trend 34,28 5585,69 74,74 

EM imputation 39,34 6613,45 81,32 

Linear regression imputation 86,63 33855,62 184,00 

 

 

Table 5: Imputation accuracy for COD 

 

 COD 

MAE MSE RMSE 

Mean Imputation 61,41 23643,98 153,77 

Median imputation of neighboring points 66,65 29964,28 173,10 

Linear interpolation imputation 68,41 25042,99 158,25 

Imputation by linear point trend 65,23 26202,24 161,87 

EM imputation 61,41 23643,98 153,77 

Linear regression imputation 110,53 60839,38 246,66 
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Table 6: Imputation accuracy for BOD5 

 

 BOD5 

MAE MSE RMSE 

Mean Imputation 37,76 8333,00 91,29 

Median imputation of neighboring points 59,26 20735,54 144,00 

Linear interpolation imputation 53,97 18032,72 134,29 

Imputation by linear point trend 37,54 8288,17 91,04 

EM imputation 33,76 5674,63 75,33 

Linear regression imputation 57,47 19428,29 139,39 

 

 

 

 

Table 7: The new values of Flow rate, TSS, COD and BOD5 

 

Variable Flow rate (m3/j) TSS (mg/l) COD (mg/l) BDO5 (mg/l) 

New Value 1246 644,515 1151,53 590,06 

Old values 1720 639 1046 523 

% -27,56 0,86 10,09 12,82 

 

 

 

Table 8: Results of redesigning the components of the WWTP of Imintanoute 

 

WWTP 

components 
Parameter Unit 

New 

design 

Old 

design 
Difference 

Coarse 

Screen 

grid surface m2 1,74 2,41 28% 

Grid refusal l/j 125,34 142,01 12% 

Fine 

Screen 

grid surface m2 0,44 0,61 28% 

Grid refusal l/j 752,05 852,06 12% 

Grit 

Chamber 

Volume m3 27 33,75 20% 

Grit 

Production 
kg/j 307,31 461,44 33% 

Anaerobic 

Pond 
Volume m3 1897,5 4579,2 59% 

Trickling 

filter 
Volume m3 425,29 509,69 17% 

Clarifiers Surface m2 95 143,14 34% 

 

Table 9: The new configuration limits 

 

Inhabitant 

equivalent 

Flow rate 

(m3/j) 

BOD5 

(mg/l) 

COD 

(mg/l) 

TSS 

(mg/l) 

40 000 2016 600 1253 671 
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Figure 2 : Original Imintanoute WWTP 

 

 

 

 

 
 

Figure 3 : New Imintanoute WWTP configuration 
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Figure 4 : The effluent load concentrations (COD, BOD5 and TSS) for the four cases examined 

 

 

 

 
 

Figure 5 : The performance of the different variants of the Imintanooute plant. 
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4. Conclusion 

Addressing the issue of missing data within 

wastewater treatment plant databases is integral to effective 

wastewater management. This paper focus on handling the 

missing data in the Imintanoute wastewater treatment plant's 

2018/2019 database. This data gap, stemming from diverse 

factors like budget constraints and technical limitations, 

disrupts information reliability. The paper primary objective 

is to select appropriate imputation methods for key 

parameters: Chemical Oxygen Demand (COD), 5-day 

Biochemical Oxygen Demand (BOD5), and Total Suspended 

Solids (TSS). The paper findings, validated for accuracy, 

highlight that linear trend imputation is the optimal method 

for handling missing TSS values. On the other hand, 

Estimation-Maximization (EM) proves to be more suitable 

when dealing with COD and BOD5 parameters. Imputed data 

reveals pollutant loads exceeding initial Imintanoute 

WWTP’s design criteria for TSS, COD, and BOD5, 

prompting a reconsideration of plant design and purification 

performance. Therefore, a redesign process is undertaken and 

lead to a reconfiguration proposal, improving operational 

efficiency, reducing costs and guaranteeing better effluent 

quality. Modeling with Dynamita's SUMO22 software 

confirms the viability of the optimized configuration. The 

results obtained from the simulations demonstrate improved 

purification yields and also ensure compliance with 

wastewater discharge standards. Moreover, this contribution 

modeling indicates that this new WWTP configuration holds 

even more promising treatment efficiencies and operational 

stability, under extreme conditions. Adopting this optimized 

configuration offers potential cost savings in maintenance, 

and anaerobic tank management.  
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