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Abstract 

Due to hospital privacy and policy restrictions and scarcity of medical image samples for medical image development, 

there are few medical image databases available for deep learning training and all access to medical image databases is difficult. 

This study identifies a research endeavor to generate medical cell images that can be controlled by masking cell position and overlap 

information. The experiments concluded that the MCGAN algorithm largely improves the generation quality of generative 

adversarial networks and enriches the diversity of manually collected data. 
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1. Introduction 

In 2014, Lan J. Goodfellow et al. from the University of 

Montreal proposed a Generative Adversarial Networks 

(GAN) model; compared with convolutional neural 

networks, generative adversarial networks are mainly divided 

into two parts of the composition: generator (Generator) and 

discriminator (Discriminator). Generator G is used to learn 

the actual probability distribution to generate the "real 

image," while Discriminator D distinguishes between the 

actual image and the "real image" generated by Generator G 

as much as possible, looks for the difference between the two, 

and feeds this difference back to Generator G. In the iterative 

process, Generator G generates the "real image," and 

Discriminator D generates the "real image." In the iterative 

process, the generator G generates as many "real images" as 

possible to deceive the discriminator D, and the discriminator 

D tries to distinguish the images generated by the generator 

G from the actual images [1-4]. Generator G and 

discriminator D constitute a dynamic "game process." The 

game between the two is to achieve an ideal state: generator 

G can generate a "fake" picture; discriminator D finds it 

difficult to distinguish whether the picture generated by 

generator G is true or false. The cost function is expressed as 

follows: 
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2. Generate medical cell images that can be controlled by 

mask for cell position and overlap information (MCGAN) 

Conditional one-dimensional vector containing light and 

color information; Mask: The mask is a manually labeled 

image, and the mask contains information on the location, 

size, and number of cells. X is the Gaussian distribution of 

the input, z is the image's label, M is a mask, and C is a one-

dimensional condition vector [5]. Generative Adversarial 

Networks (GANs) are algorithms in the field of image 

synthesis that are capable of generating images with higher 

accuracy and better quality. Structurally, GANs consist of 

two interconnected structures: a generator network (G) and a 

discriminator network (D). The generator network creates 

realistic data, while the discriminator network evaluates the 

generated data against real examples. Through iterative 

competition and collaboration, these networks continuously 

refine their weights and straighten their equilibrium. That is, 

the generators produce highly realistic images, while the 

discriminators are unable to distinguish them from accurate 

data. However, because GANs do not generate enough 

diversity and do not have enough control condition functions, 

many scholars have investigated various GAN branch areas 

[6-7]. Generative Adversarial Networks (GANs) utilize a 

specified mathematical equation as the governing principle 

for the weight adjustment process during the learning phase: 
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In the equation:
min

G the minimum value that represents 

the generated network error;
max

D 表  Maximum value for 

discriminating network errors; ( )~ dataz P y
representing the 

true distribution of sample. 

( )~ datax P x
representing the distribution of random 

noise samples; E The mean 

representation of the probability of calculation. In 

contemporary generative adversarial networks, the generative 
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network G acquires noise z as its input in the latent space. As 

z traverses fully connected layers, G produces synthesized 

images. On the other hand, the discriminative network D 

plays the role of discerning genuine images from counterfeit 

ones. Nevertheless, it is crucial to note that a direct mapping 

between the input and output does not exist. Henceforth, 

conditional generative adversarial networks employ the 

ensuing learning principles to modify the weightage of 

prevailing generative adversarial networks: 

 

( )

~ ( )

~

( , ) min max[ log( ( , ))

log(1 ( , ( , )))]

data

data z

cGAN x P x
G D

z P

L G D E D y x

E D y G z y

=

+ −
 (2) 

 

The label information corresponding to accurate sample 

data is represented in mathematical notation. Adding labels 

to Gaussian noise can make the results of the generative 

adversarial network controllable (Figure 1). For example, 

Pix2pix expands on Conditional Generative Adversarial 

Networks (CGAN) by substituting noise and conditional 

information with mask images, thereby facilitating image-to-

image translation. The adversarial network error is regulated 

by a regularization term error after generating the adversarial 

loss to maintain a strong resemblance between the input and 

output images [8]. 
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G L G D L= +
 (3) 

 

To establish an error term between the detected image 

and the corresponding image labels 1

IL
. During the training 

process, it is possible to perform detection simultaneously 

while generating. 
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In the equation: I Indicates the location label 

corresponding to the target original image; x
To express the original image, an optimizer is established on

 both the original image and the labels of the original image,

 in conjunction with the detection network.  

 

The definition of the formula of confrontation is defined

 as: 
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In the equation: _

LCGAN

G advL
Representation of Generative 

Network Items; _

LCGAN

D advL
Representation of Discriminatory 

Network Items. The application of the aforementioned 

formula guarantees the similarity between the synthesized 

image and the desired image. To achieve this, a regularization 

term is incorporated to minimize the discrepancy between the 

two images. In order to ensure the generation of high-quality 

images, the concept of structural similarity (SSIM) is 

introduced. SSIM is a metric for evaluating images with a 

clear focus on retaining some of the information. The output 

of SSIM ranges between 0 and 1, with a value closer to 1 

indicating a higher quality of the generated image. Also, in 

the experiments, the data from the labelled samples are used 

to calculate the SSIM values and to assess the similarity 

between the generated image and the real image in terms of 

brightness, contrast and structure. This method ensures the 

overall quality of the generated images: 
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In the equation:
N

The number of pixels in the image;
p

The value of the central pixel representing a pixel block, 

Defined as: 
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In the equation: zu
、 xu

 It denotes the average pixel 

value of an image; z
、 x

 Standard deviation represents the 

variation in pixel values of an image; zx
 the covariance of 

two image pixels; 1c
 and 2c

both are constants. By combining 

the above formulas, we can derive the definition of the total 

loss function as follows: 
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(9) 

 

In the equation: 1 、 2 、 3  are all constants. 

 

3. Network architecture 

 

3.1. Overall structure 

Flow chart is given in Figure 2. 

 

3.2. Generative Network Architecture 

We have incorporated residual blocks into the 

intermediate architecture to improve the generative network's 

ability to learn from data. This allows the network to gather 

detection information during the training process. The 

generative network is made up of three modules. The first 

module includes three convolutional layers. The second 

module consists of six residual blocks. The third module 

includes two deconvolutional layers and one convolutional 

layer. In this study, we have employed a fully convolutional 

network for the generative network, excluding fully 

connected and pooling layers.  

The ReLU function is used as the activation function, 

while the final layer employs the Tanh function as its 

activation function [9]. Conditional vectors in the 

intermediate architecture, through which the lighting of the 

image and information about the image are controlled [10]. 

 

3.3. Discriminative Network Architecture 
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The imbalance between the generative and 

discriminative network capability occurs during the training 

process, resulting in the generative Network being unable to 

compete with the discriminative Network. So, limiting the 

network depth of the discriminative Network limits the ability 

of the discriminative Network to a certain extent. The 

structure of the discriminative Network is shown in Figure 3. 

It consists of five convolutional layers without using fully 

connected and Pooling layers. 

 

4. Experimental Analysis 

 

4.1. Dataset 

The study used a dataset of manually collected images of 

human blood red blood cells obtained by the University. We 

divided the images into a training set and a test set where 80% 

of the images were used for training and 20% for testing. The 

model was trained using the training set and its performance 

was evaluated using the test set. 

 

4.2. Experimental Comparison 

The experiment was performed on a Linux operating 

system, utilizing the Tensorflow 1.20 deep learning 

framework. The computer setup consisted of an NVIDIA 

4080Ti-12G graphics card and two DDR4-3000-32G 

memory sticks. To ensure unbiased results, the dataset was 

randomly split into a training set and a test set, with a ratio of 

8:2. Each training model underwent an equal number of 

iterations. Furthermore, a comparative approach was 

employed by using the original image dataset with labels to 

ensure a fair quantitative comparison of the generated quality. 

After randomly selecting three sets of experiments, I 

observed and recorded the convergence data of the loss 

function. As training iterations increased, the loss function 

consistently decreased in the convergent region. This 

decrease in the loss function is driven by the mechanism of 

generating an adversarial loss, which continuously opposes 

the loss during the iteration process. To evaluate the quality 

of the generated images, we can also perform quantitative 

analysis using metrics such as PSNR (Peak Signal-to-Noise 

Ratio), SSIM (Structural Similarity Index), and IS (Inception 

Score). PSNR is a metric that assesses the quality of images 

by directly measuring the differences between pixel values. 

A higher PSNR value indicates less distortion. It is calculated 

by comparing the grayscale difference between pixels in the 

generated image and the real sample. The formula for 

calculating PSNR is as follows: 
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In the equation:W and H are used to represent the width 

and height of an image. The SSIM metric, or Structural 

Similarity Index, is utilized during the training process to 

assess the similarity between two images. It generates a value 

ranging from 0 to 1, where a value closer to 1 signifies a 

smaller disparity between the image and the actual image, 

thus denoting higher image quality. A higher SSIM value 

implies that there is less loss of detailed information from the 

original image. On the other hand, the Inception Score (IS) 

metric is employed to compare and evaluate image quality. A 

higher IS value indicates better image quality. Table 1 

showcases the image quality of different models using three 

different methods of measuring image quality. The loss 

function of the generative adversarial network was selected 

above for comparison, and it can be seen that as the number 

of training iterations deepens, the loss function decreases in 

the convergence region, and the generative adversarial loss 

mechanism is a process of constant confrontation that 

prompts the loss function to decrease as the number of 

iterations increases (Fig. 4). The results generated by the 

independent generator, with random input masks to the 

generator. Figure 5 (b) shows the results generated without 

the SSIM loss term, and Figure 5 (c) shows the results 

generated with the SSIM loss term. It is clear that the edges 

of the cells are much sharper and meet the requirements of 

the cell detection database. Figure 5 (d) and Figure 5 (e), on 

the other hand, are both overlapping cell images generated 

with the Generative Adversarial Networks algorithm in this 

chapter, and the image overlap in Figure 5 (e) is particularly 

severe, which largely augments the cell database. Table 1, the 

experiments found that the addition of SSIM term on the 

generator can improve the overall image generation quality, 

for small scales on the addition of MS-SSIM term to a certain 

extent can increase the local generation quality and improve 

the generation effect. The red mask label (Fig. 6), Gaussian 

kernel label and the trained cellular dataset, each figure 

corresponds to each other. It belongs to the experimental 

validation part, mainly to verify the experimental accuracy 

and the original figure for comparison. The table 2 shows the 

comparison of image generation of GAN and MCGAN, the 

quantitative analysis shows that the generation quality of 

MCGAN  is better than that of the original GAN, and also 

significantly better than that of the original GAN in terms of 

PSRN, SSIM metrics, but this paper's improved GAN is more 

suitable for image generation for this database. 

Figure 7, the above three tables are the image generation 

comparison of GAN, DCGAN and CGAN, quantitative 

analysis can be seen that the generation quality of DCGAN 

and CGAN is better than the original GAN generation 

quality, in the PSRN, SSIM indexes are significantly better 

than the original GAN generation quality, but in this paper's 

improved GAN is more suitable for the image generation of 

this database. The subjective analysis is also given in the 

following figure, which shows the quality of images 

generated by the original GAN, DCGAN and CGAN 

compared to the improved GAN in this paper. 
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Figure 1: Flowchart of the model for generating adversarial networks.
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Figure 2: Flow Chart. 

 

 

 

Figure 3: Structure of discriminator network. 
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Figure 4: Loss Function. 
 

 

Figure 5: Experimental data. 
 

Table 1: Experiment contrast result of various test methods 

 

Method name Number of iterations PSRN SSIM MSE 

GAN 50000 18.23 0.875 232.4 

CGAN 50000 20.87 0.905 198.2 

MCGAN 50000 20.64 0.907 202.3 

 

 

(a) (b) (c) (d) (e)
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Figure 6: Experimental data. 

 
 

Table 2: Comparison of quantitative results of PSNR, SSIM and IS. 

 

Method name Number of iterations PSRN SSIM MSE 

GAN 50000 12.39 0.77 439.96 

 

Method name Number of iterations PSRN SSIM MSE 

MCGAN 50000 15.13 0.86 387.43 
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GAN CGAN 本文GANDCGAN
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Figure 7: Generative result of GAN 

 

 

5. Conclusions 

This paper realizes high-precision cell detection with a 

generative adversarial network model, which should be able 

to detect target images with adhering and overlapping 

complex backgrounds and less contrast with the surrounding 

background. The experiments concluded that the MCGAN 

algorithm largely improves the generation quality of 

generative adversarial networks and enriches the diversity of 

manually collected data 
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