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Abstract 

The use of joint planting of tree species with different life strategies, annual growth rates, but with a complementary reaction 

to co-growth in reclamation sites makes it possible to more effectively use ecological niches and ensure the formation of species-

rich forest communities with higher biological productivity. At each age stage of planting, a certain category of woody plants 

"works" on carbon accumulation, which generally provides an increased deposition effect compared to single-species plantations. 

Modern recommendations on forest reclamation are focused on the creation of monocultures that are insufficiently stable, do not 

create a nature-like structure of plant communities and are not sustainable for a long period of time. Currently, technologies have 

been developed taking into account the sustainability of forest plantations on landfills.  
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1. Introduction 

Industrially developed Kuzbass (Kemerovo region, 

Russia) is not only the planet's source of raw materials, but 

also a producer of ferrous and non-ferrous metals and 

chemical products. Since the 1990s, the "lungs of the planets" 

— the Siberian taiga — have been actively cut down, mining 

and processing enterprises have been built. Most of the 

territory of Kuzbass is subject to strong man-made impacts. 

The irreversible process of destruction and degradation of the 

soil under industrial waste dumps from open-pit coal mining, 

pollution of groundwater and surface waters, pollution of the 

atmosphere by industrial emissions result in the 

disappearance of natural flora and fauna, as well as a 

catastrophic threat to the health of people living in the region. 

Only 30% of the territory of the region, where 5-10% of the 

population lives, meets satisfactory environmental 

requirements. The 20th century brought mankind a lot of 

benefits associated with the rapid development of science and 

industry. However, it also put the Earth on the brink of an 

environmental disaster. The intensification of the extraction 

and use of natural resources, urbanization and huge amounts 

of harmful emissions are changing nature. Their widespread 

use has led to such an interaction between nature and man, 

when the anthropogenic load exceeds the ecological 

capabilities of a given territory, mainly due to the potential of 

its natural resources and the general stability of natural 

landscapes to the effects of human activity [1]. 

The theoretical purpose of the reclamation of 

technogenically disturbed territories is the restoration of land 

use to the condition before the start of mining in the 

mine/mine sites [2-4]. In each case, it is necessary to restore 

the structure, functions of the ecosystem and the original 

terrain at least approximately. The concept of 

restoration/reclamation of disturbed territories covers a whole 

range of technical solutions. To understand the issue, these 

solutions can be divided into three main groups: restoration, 

rehabilitation and replacement [5]. The following stages of 

reclamation of degraded mine sites are distinguished [6-9]: 

(1) preliminary environmental assessment; (2) planning of the 

final state of the site; (3) detailed environmental assessment 

of the nature and extent of the negative impact; (4) 

identification of criteria for purification from pollutants; (5) 
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development of a recovery plan; (6) final verification and 

monitoring of the resulting condition. The effectiveness of 

such a restoration concept has been confirmed by long-term 

practices of its application [7-12]. 

The planned resulting state of the site affects all 

stages of the reclamation strategy, since the goals of the 

resulting state affect the cleaning criteria and determine the 

scale of necessary measures. Upon completion of the 

restoration plan, the terrain should be modified to obtain 

morphological, topographic and scenic effects (Figure 1) 

compatible with the intended end use of the site [13]. Often, 

landscape creation measures include backfilling, contouring 

rock piles, as well as replacing overburden and topsoil, both 

to restore contours and natural landforms, and to restore 

fertility. The main areas of use of the restored territories of 

mine coal dumps are agriculture, forestry, the formation of 

reservoirs and habitats of wild animals, etc. At the same time, 

the realization of any of these land-use opportunities is driven 

by technical, economic, social and environmental aspects [5]. 

  
(a) (b) 

  
(c) (d) 

Figure 1. Schematic representation of the reclamation of an open pit, including various forms of landscape restoration: (a) complete 

backfilling to restore the original uses in agroforestry or the introduction of new uses; (b) partial backfilling to restore previous uses 

before the development or introduction of new uses; (c) minimal selective backfilling and surface treatment of rocks, tops and 

embankments for replacement activities; and (d) maintaining the morphological characteristics of an open pit with vegetation laying 

or some improvement actions for spontaneous ecological succession.  

Source: Illustration by authors, the scheme idea by [5]. 

 

 

 

Technologies for the restoration of disturbed areas 

that combine physical, chemical and biological approaches 

are usually classified as “passive" or “active" [14-16]. A more 

effective treatment strategy is considered to be based on 

biological activity - biological strategies [17]. Within the 

framework of these processes, some of them can be 

considered active, while the other can be considered passive. 

For both approaches to the cultivation of territories, the main 

goal is to restore the qualitative characteristics of soils 

(decrease in acidity, decrease in the concentration of toxic 

metals, decrease in the concentration of sulfates, etc.) [16]. 

Active processing methods take up less space and are more 

reliable than passive systems, but generally require high 

capital costs and high ongoing operation and maintenance 

costs due to regular maintenance fees for continuous 

operation [14, 16, 18, 19]. Active systems include chemical 

neutralization, aeration, autonomous sulfidogenic 

bioreactors, etc. The main advantages of passive processing 

methods are low creation costs, ease of operation and 

maintenance. Despite the economic attractiveness, passive 

methods have significant limitations. They require a large 

area and are best suited for cleaning mine effluents with low 

acidity and low costs [16]. Passive systems include open 

limestone channels, oxygen-free limestone drains, dispersed 

alkaline substrate, aerobic wetlands, anaerobic 

“wetlands”/composting reactors, sequential alkali production 

systems, permeable reactive barriers, iron oxidation 

bioreactors with a compacted layer, etc. [14,15,20,21]. In 

practice, passive methods are used either individually or in 

combination, depending on soil characteristics and 
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processing requirements. In general, alkaline materials are 

used to neutralize acidity, organic substrates are used to 

create a reducing medium, and bacteria are used to catalyze 

reactions and accelerate deposition processes [14]. It can be 

considered that passive processing methods resemble similar 

physical, chemical and biological processes that occur in 

natural wetlands [14]. In these systems, the acidity and pH of 

the water to be treated change, which leads to the 

neutralization of the level of active acidity in favor of the 

formation of insoluble chemical compounds that deposit and 

retain heavy metals. At the same time, there are old, 

abandoned mines in the world, without any plans for 

environmental restoration or reclamation. Some of these mine 

sites are currently overgrown with wild vegetation. This 

spontaneous process of colonization and rooting of species on 

degraded or disturbed lands (spontaneous ecological 

succession) helps to reduce the risks of pollution from old 

abandoned mines. In this context, spontaneous ecological 

succession can be considered as a natural way to restore 

degraded areas. Therefore, when it is impossible to provide 

technical reclamation in an economically feasible way, the 

regeneration process by natural restoration (spontaneous 

succession) can be considered an acceptable solution, 

especially in cases of small mines. Quite often, passive 

restoration leads to the desired result of reclamation [22-25].  

This process of natural recovery can be controlled by 

increasing efficiency and accelerating the effects necessary 

for spontaneous ecological succession [10, 25-27]. The 

existing natural vegetation cover in abandoned mines can be 

multiplied by large-scale plantings and the maintenance of 

native species for several years. It is possible to expand the 

uniform distribution of seeds obtained from wild plants in the 

territory. Eventually, it is possible to change the artificial 

habitat and make it more suitable for subsequent plant 

communities [28]. The potential of local vegetation species 

to restore soils is quite attractive, since local wild species do 

not require frequent irrigation, fertilization and pesticide 

treatment, while at the same time a plant community 

comparable to the existing one can be created. An alternative 

strategy is the gradual reclamation of the territories of 

existing mines at separate stages, where ore extraction is 

completed. To implement such a phased approach, a mining 

plan is needed, adjusted to take into account the landscape 

restoration plan. The stages of gradual restoration can be the 

following: removal and storage of soil and overburden for use 

in reclamation works; research to ensure optimal restoration 

of vegetation and the results of reclamation; sowing and 

creation of forage crops (grasses, shrubs and trees) for 

subsequent restoration of vegetation [29,30]. Agricultural use 

is a suitable and economically sound solution for rural areas. 

The creation of crops can be achieved at a lower cost than 

with other possible uses such as forestry, and with higher and 

immediate economic profitability. The options for using the 

restored territories of coal mines in agriculture are described 

in [31-33]. Even deep mines can be adapted for agriculture, 

they can be used to store agricultural products or build wine 

cellars, providing the advantages of constant temperature and 

high humidity. The characteristics of the destroyed section of 

the mine determine the options for their subsequent use. For 

the operation of agricultural machinery, a relatively flat slope 

and the presence of a soil layer satisfying the following 

conditions are necessary: a minimum thickness of 40 ; a 

surface horizon rich in humus, not mixed with other horizons, 

without compaction; backfilling compatible with effective 

drainage; soil restoration above the groundwater level, the 

necessary provision of soil quality characteristics after 

extraction [30,34,35]. Failure to meet all these conditions sets 

a different direction for the use of the restored territories, for 

example, forestry. Forestry use of land after mining is also 

suitable for rural areas and is the best solution for poor, rocky 

soils and areas with steep terrain. The reclaimed lands of coal 

dumps of mines are often used for forestry purposes [30,36-

38]. In technogenically disturbed lands of mine dumps, the 

soil is deficient in nutrients, it has high levels of toxic metals, 

low pH values and substrate compaction, which can limit 

vegetation growth. At the same time, the choice of plant 

species depends on the thickness of the available soil and the 

objectives of reclamation measures, i.e. the selection of 

suitable species and ensuring the availability of water in the 

soil, satisfactory permeability and drainage conditions, 

protection from pests are necessary measures to ensure the 

best prospects for successful forest management. The 

reproduction of forest lands after mining can be considered 

the optimal resulting state of land management. The 

restoration to the resulting state of forest management of the 

lands of worked-out or abandoned mines provides an 

aesthetic landscape, a natural habitat and economic benefits, 

for example, from wood products, resin and other products of 

forest processing [39]. Forestry use after reclamation has 

other advantages: nutrition and protection of wildlife, 

prevention of erosion and creation of recreation areas.  

Despite the artificial nature of open-pit mining, the 

topographic relief created as a result of mining operations 

may contain elements identical to the diverse topographic 

characteristics of the natural landscape [5]. Thus, dams of 

reservoirs and artificial lakes formed during the flooding of 

quarries may be important for the survival of animal and plant 

species in areas with water scarcity, determining the 

diversification and conservation of ecosystems in inland 

regions. Usually, underground mine galleries and open-pit 

mines are flooded by natural groundwater and surface water 

inflow and/or through human intervention [30,40,41]. 

Sometimes mine galleries are intentionally flooded to prevent 

and/or mitigate the oxidation of pyrite formations. At the 

same time, flooded mines can be used as strategic reservoirs 

for storing water, which can be used for various purposes: 

(irrigation, domestic and/or industrial water supply, hydraulic 

fracturing, aquifer recharge, fire fighting, etc.). On the other 

hand, flooded quarries can form a habitat for wild waterfowl 

and animals [5]. In modern society, various physico-chemical 

methods of reclamation of soils contaminated by mines are 

being avoided due to the increased risk of re-contamination 

through wastewater treatment plants and high cost [28]. 

Increasingly, preference is being given to in situ methods that 

are less destructive to the environment and more economical. 

In this sense, phytoremediation methods become a suitable 

alternative [42]. 

The purpose of this work was to study the potential 

of phytoremediation approaches that reduce the carbon 

footprint in the territories of technogenically disturbed 

landscapes. 
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2. Methods 

2.1. Objects of research 

Biological methods and technologies for reducing 

the carbon footprint on technogenically disturbed lands by 

coal enterprises were the main object of the study. 

2.2. Research methods 

A bibliographic search and subsequent analysis of 

scientific manuscripts and online resources devoted to 

biological approaches to reclamation were carried out as part 

of our research. Materials from open sources and the Scopus 

citation database were used. The depth of the search was 

limited mainly by the last five years, taking into account the 

relevance of the topic of biological remediation and carbon 

footprint. The need to cite earlier works on specific issues of 

phytoremediation and reduction of anthropogenic impact on 

technogenically disturbed lands was determined by the 

uniqueness of the results presented in them. 

3. Results and Discussions 

Phytoremediation is understood as the use of trees, 

shrubs, herbs and aquatic plants and related microorganisms 

to remove, decompose or isolate toxic substances from the 

environment [47]. Figure 2 shows the general scheme of the 

phytoremediation process.  

 

Figure 2. Schematic drawing showing phytoremediation in 

air, soil and water  

Source: Illustration by authors, the scheme idea by previous 

study [44]. 

 

Depending on the chemical nature and properties of 

the contaminant, phytoremediation of contaminated sites can 

be performed by various methods and combinations thereof 

[45-46]: phytodegradation/phytotransformation, 

phytostabilization/phytoimmobilization, phytofiber, 

phytoextraction, phytofiltration and phytostimulation. 

Hydraulic barriers, vegetation cover, created wetlands and 

phyto desalination, which some authors refer to as 

independent methods of phytoremediation, are essentially a 

combination of previously defined ones. The basic idea that 

vegetation can be used to restore soil, air and water is 

primitive [47]. However, the scientific approach and the 

interdisciplinarity of the conducted research led to the 

expansion of these ideas to a global method of restoring the 

ecological environment [48]. Phytoremediation of inorganic 

pollutants, i.e. the use of plants for the destruction, 

decomposition and/or stabilization of organic substances in 

the environment, is now a promising, profitable and 

environmentally friendly method of bioremediation [49-55]. 

In addition to the removal of pollutants, phytoremediation has 

extra advantages such as improving soil quality, soil carbon 

sequestration, biomass production and aesthetic effect [50]. 

Various pollutants (heavy metals, organic compounds, 

pesticides and xenobiotics) can be effectively eliminated by 

plants [56]. 

The creation of vegetation cover is a common method 

of restoration during the reclamation of mine sites. 

Vegetation restoration can cover the entire area or part 

selectively, in accordance with the intended subsequent use 

of the site. As a rule, the physico-chemical properties of soils 

in the mine area interfere with soil-forming processes and 

plant growth [28]. In addition to increased concentrations of 

metals, there are other adverse factors (lack of topsoil, 

erosion, drought, compaction, significant temperature 

fluctuations, lack of fine materials forming the soil, lack of 

essential nutrients) [57-58]. Technogenically disturbed soils 

of mines usually have low concentrations of important 

nutrients such as N, P and K [59]. Toxic metals and 

substances negatively affect the abundance, diversity and 

activity of soil organisms, suppressing the processes of 

decomposition of soil organic matter and nitrogen 

mineralization [60]. The pH of the substrate affects plant 

growth mainly through its effect on the solubility of 

chemicals, including toxic metals and nutrients. The 

application of additives (inorganic and organic fertilizers) is 

a common practice to promote the restoration of vegetation 

on degraded or polluted soils. The application of organic 

fertilizers (compost, manure, bio-solids) provides an effective 

way to recycle waste [61,62]. It is a common practice to select 

drought-resistant fast-growing crops and/or forage plants that 

can grow on soils contaminated with metals or on soils with 

nutrient deficiencies [28]. When using this approach, 

degraded and/or polluted soil is covered with vegetation 

resistant to adverse soil conditions, which limits further soil 

erosion and leaching of pollutants into groundwater [63]. 

Grasses, shrubs or trees growing on man-made disturbed soils 

or tailings ponds are used to minimize the penetration of 

rainwater and contain the spread of pollutants. Roots enhance 

soil aeration, promoting biodegradation, evaporation and 

transpiration [28,64-68]. The creation of vegetation cover can 

help achieve the goals of stabilization, pollution mitigation 

and visual improvement. Such vegetation covers are often 

integrated with classical engineering technologies such as 

fencing, insulation or encapsulation of hazardous waste from 

mines. A broader perspective which includes various groups 

of plant species that perform various functional roles in the 

reclamation process, is attractive for soil restoration in mines 

[28]. Thus, the use of legumes can enrich the nutrient content, 

and the combined use of perennial and annual plants can 

provide a significant contribution in terms of organic matter 

and nutrient recycling, making a significant contribution to 

soil development [62,69,70]. However, this approach 

requires additional information about plant communities 

growing on degraded mine soils in order to accurately 

understand their potential for remediation of 

polluted/degraded soils in abandoned mines [28].  

The creation of vegetation on technogenically disturbed 

lands of mines requires the use of special methods depending 
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on the state of the soil and the general environment; 

interaction between abiotic and biotic factors; knowledge in 

the field of plant biology; morphology of the area; methods 

of sowing and planting, vegetation and forestry [71-74]. It has 

been established that the use of fibrous crops (for example, 

miscanthus, vetiver and saccharum) in phytoremediation 

helps to eliminate pollutants accumulating in various parts of 

plants. These crops are also used to produce biofuels and 

green energy [75]. Planting fiber crops will also improve the 

scenic beauty of the area, providing nesting and breeding 

grounds for various birds and small organisms, which restores 

the ecosystem and supports biodiversity. It is known that 

plants are carbon storages and support soil flora [76,77]. 

Carbon sequestration reduces the carbon burden in the 

environment and can help mitigate the effects of global 

warming and climate change [78]. But the fabrics of fibrous 

crops grown in contaminated sites must be strictly checked 

for safe human use, so products made from them, such as 

baskets, mats, handmade products, decorative materials and 

reinforcing materials, must also be checked for safe 

contamination limits. 

However, the entire positive potential of 

phytoremediation is determined not only by plants, since the 

synergistic effect of the joint action of plants with microbes 

in phyto- and bioremediation is always better than any of the 

individual processes. In most cases, metallophytic plants 

already contain various heavy metal-resistant microbes that 

stimulate plant growth and help plants extract metals [79]. In 

fact, plants constantly interact with microorganisms present 

near the roots, called the rhizosphere, many of which form 

close, stable and mutualistic associations with plants. The 

most important examples of such symbiosis are arbuscular 

mycorrhizal fungi, which trigger mutualism or symbiosis 

with terrestrial plants [80], and nitrogen-fixing rhizobia, 

which establish symbiosis with legumes [81]. Both of these 

symbioses enhance phytoremediation. It has recently been 

discovered that plant endophytic microorganisms that live 

inside plant tissues play a crucial role in plant health, 

contribute to plant protection from pathogens and pollutants 

[82]. Although plant growth in the territories of coal dumps 

is very limited due to harsh environmental conditions, 

phytoremediation can stabilize tailings ponds, providing 

vegetation cover that prevents the spread of potentially toxic 

elements [49,83,84]. Microbial communities have the ability 

to deposit pollutants inside soils and can stimulate plant 

growth on soils of mines and tailings ponds [8385]. Their 

combination in the process of phytoremediation forms 

approaches to more sustainable, efficient and 

environmentally friendly technologies [85-87]. Similarly, 

symbiotic nitrogen-fixing bacteria such as Rhizobium retain 

atmospheric nitrogen and improve legume growth [88-89]. 

The use of metagenomics, metaproteomics, etc. approaches 

in combination with traditional methods (physiological 

research and isolation) allows to gain more knowledge about 

the mechanisms of interaction between prokaryotic and 

eukaryotic microbial communities in the conditions of mining 

[90-92]. The use of microorganisms instead of chemicals in 

plant bioaugmentation is another promising alternative, since 

microbial metabolites are biodegradable and less toxic, can 

be synthesized in the rhizosphere and they will improve the 

absorption of metals and their bioavailability [93-94]. 

Several extensive reviews on these topics have been 

published [95,96] and options for interaction between plants 

and bacteria (bioremediation) for the restoration of 

hydrocarbon-contaminated soil have been proposed [97,98]. 

A detailed report on the rhizosphere control of associations 

between plants and microorganisms, the effects on 

biodegradation and bioavailability of organic and metalloid 

pollutants, as well as the prospects for manipulating the 

rhizosphere for control during phytoremediation of soils is 

provided in [99]. According to the author of this work, multi-

polluted soils are complex and heterogeneous, which requires 

an integrated rhizosphere management process, in which a 

combinatorial approach using hydrocarbon and/or coal-

mining microbes, joint cultivation of crops and 

phytoextraction of pollutants is used to achieve the desired 

results of soil and land management. Thus, for soils 

containing excessive amounts of nickel, it is promising to use 

the following plants during biological reclamation: Salix 

schwerinii E. L. Wolf, A. retroflexus L., and microorganisms 

- Pleurotus ostreatus, Pseudomonas frederiksbergensis 158. 

For soils containing arsenic: Solanum nigrum L.; Klebsiella 

pneumoniae microorganisms. For soils containing cadmium: 

Pinus sylvestris Lour., Solanum nigrum L., Brassica juncea 

(L.) Coss; Klebsiella pneumonia, Cupriavidus taiwanesis, 

Pseudomonas putida, Azotobacter chroococcum, Rhizobium 

leguminosarum bv. trifolii, Enterobacter hormaechei 146, 

Aspergillus niger, Aspergillus fumigatus and Penicillium 

rubens microorganisms.To increase soil fertility, the use of 

biodegradable (which includes natural fibers) geotextile 

material is promising [100]. Geotextile is able to create 

optimal conditions for seed germination, the development of 

soil microflora, because it contains a number of nutrients, is 

able to accumulate the optimal amount of moisture, and is the 

optimal means of combating soil erosion [101].  

So, to reduce the content of heavy metals, measures 

using plants and microorganisms capable of accumulating 

these substances are effective. There are known works [102-

107] in which it was found that strains of microorganisms 

effective in the bioconversion of coal have a stimulating 

effect on plant growth due to the production of organic acids 

[108]. Ultimately, interactions between plants and bacteria 

can lead to the creation of candidate strains for the 

development of a biological treatment process, stabilization, 

and even restoration of disturbed soils [109]. To normalize 

the pH and increase soil fertility, the application of biochar is 

a promising measure. Biochar (charcoal) is a product of 

pyrolysis of plant biomass in oxygen–free conditions, 

consisting of carbon and ash [110]. Studies show that the 

application of biochar contributes to an increase in low soil 

pH values, affects the processes of nitrification and 

ammonification, increases the C/N ratio, is a source of 

phosphorus; increases the capacity of soil cation exchange, 

which leads to a decrease in leaching due to nutrient retention. 

This contributes to the development of microorganisms even 

in soil with a low content of organic substances [111-114]. 

Liming (lime of organic origin was used – sugar beet 

lime) and the introduction of composted solid biological 

substances into the topsoil proved to be effective in reducing 

soil acidity; data on the reclamation of a copper mine 

(Poderosa deposit, Spain) [115].  

To reduce the alkaline pH to a neutral value of soils, 

gypsuming and acidification of soils are used. During 

gypsuming (application of gypsum, various industrial wastes, 
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for example, phosphogypsum – waste from the production of 

mineral fertilizers, phosphoric acid and phosphoric fertilizers, 

into the soil) [116], sodium is replaced with calcium, resulting 

in a decrease in alkalinity. During acidification, soil 

acidification occurs due to the introduction of sulfur, sodium 

disulfate, etc. [117]. In [118], the use of phosphogypsum as a 

mineral carrier for beneficial groups of microorganisms in 

bioprocess detoxification of environmental components, 

including technogenically disturbed lands of coal dumps, is 

considered as one of the directions of utilization of 

phosphogypsum. For the detoxification of heavy metals, 

measures for the use of humic preparations are promising. 

Humic preparations are liquid, pasty and solid substances of 

natural origin obtained from brown and oxidized hard coals 

with alkaline treatment, used for detoxification and soil 

reclamation [119,120]. It is known that humic preparations 

are able to bind metals, reducing their solubility, 

bioavailability, and mobility [121].  

Alternatively, on-site production of humic 

substances from coal production waste by specialized 

microorganisms. Under aerobic conditions, coal is oxidized 

by both biotic and abiotic processes to a weathered material 

rich in humic substances [122]. Under anaerobic conditions, 

a sequence of primary and secondary bacterial enzymes 

depolymerizes and metabolizes coal, providing a wide range 

of short-chain organic acids and alcohols [123]. These low 

molecular weight organic compounds serve as substrates for 

other consortia of microorganisms, such as acetogens and 

methanogens [124-127]. In [128], fungal coal was obtained 

on the weathered coals of mines in South Africa by the 

introduction of fungi with specific characteristics, which was 

planned to be used to restore the lands of waste areas both as 

a source of humic material and in the form of biofertilizers 

[129,130].  

4. Conclusions 

Modern research considers phytoremediation not 

only as the use of green plants to remove or neutralize 

environmental pollutants, but also as a tool of green 

biotechnology, in which plants create a rich 

microenvironment that provides conditions for the 

reproduction and activity of microorganisms thanks to 

organic materials, nutrients and oxygen, for the 

implementation of sustainable practices for the restoration of 

technogenically disturbed lands of coal enterprises. It is 

generally recognized that plants enrich the microenvironment 

not only by releasing organic substances, nutrients and 

supplying oxygen to stimulate the growth and activity of soil 

microbes, but also by absorbing carbon from soil, water and 

air. 
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