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Abstract 

 The crystallographic structure of copper [I] oxide is an irregular graph, so degree of vertex of some vertices is different. 

Irregularity indices of copper [I] oxide play an important role to understand the significance and properties of structure of copper 

[I] oxide and gain attention of researchers. In this study, we are interested to deal with irregularity indices for copper [I] oxide. This 

study explores the application of irregularity indices derived from graph theory to analyze the crystal structure of copper [I] oxide 

Cu2O [m; n]. We also construct table for edge partition of Cu2O [m; n]. This study is not only advancing our understanding of the 

crystallographic irregularities in Cu2O [m; n] but also demonstrates the utility of graph-based irregularity indices in the study of 

Cu2O [m; n]. From this work, we analyzed the relationship between irregularity indices and physicochemical properties like boiling 

point, enthalpy of copper [I] oxide. The outcomes of this investigation have broader implications for the field of chemical graph, 

providing a foundation for future research on quantitative structure property relationships. In this work, crystallographic structure 

of Cu2O [m; n], irregularity measures (IMs), computation of edge partition of Cu2O [m; n], computation of irregularity indices for 

Cu2O [m; n], computation of physicochemical properties such as boiling point, enthalpy, molar volume and molar mass of copper 

[I] oxide have been discussed.  
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1. Introduction 

 Graph theory is a branch of discrete mathematics 

that deals with the study of graphs, which are mathematical 

structures used to model pairwise relationships between 

objects. The basics of graph theory are vertices and edges that 

are fundamental units of graph. Vertices are points or nodes 

in the graph and edges are connections or links among 

vertices in the graph [1]. In chemical graph theory, a 

molecular graph, which also called chemical graph, is a 

representation of the structural formula of a chemical 

compound in terms of graph theory. In graph, there are some 

vertices, edges so in chemical graph vertices correspond to 

the atoms of the chemical compound and edges correspond to 

the chemical bonds between the elements [2]. Copper is a 

chemical element with the symbol Cu and atomic number 29. 

It is a soft, malleable and ductile metal with very high thermal 

and electrical conductivity. Copper exhibits a rich 

coordination chemistry with complexes known in oxidation 

states ranging from 0 to +4, although the +2 (cupric) and the 

+1 (cuprous) oxidation states are by far the most common, 

with +2 predominating. 

 Compounds of copper have found extensive 

practical usage, including as catalysts in both homogeneous 

and heterogeneous reactions, as fungicides, pesticides, and 

wood preservatives, as pigments for paints and glasses, and 

in the so-called high-temperature superconductors. Copper 

oxide is a compound, which formed due to oxygen and 

copper. Copper oxide has many forms. They form when 

oxygen combines with copper in different ways. The most 

common form of copper oxide is copper [I] oxide [3]. In Cu2O 

[m; n], m represents the number of unit cells in row and n 

represents the number of unit cells in column. If there is one-

unit cell in row and one- unit cell in column, then we write 

copper [I] oxide Cu2O [1; 1]. If there are two-unit cells in row 

and two-unit cells in column then we write copper [I] oxide 

Cu2O [2; 2] as well and if there are four-unit cells in row and 

also four-unit cells in column then we write copper [I] oxide 

Cu2O [4; 4], respectively. Copper [I] oxide or cuprous oxide 

is an inorganic compound also called di-copper oxide or red 

copper oxide with the chemical formula Cu2O [m; n]. It is 

covalent in nature. Cu2O [m; n] crystallizes in a cubic 

structure.  

 It has reddish black or reddish-brown appearance. It 

is p-type semiconductor material. Its melting point is very 

high which is 1232oC and its boiling point is 1800oC. Copper 

[I] oxide is insoluble in water and soluble in concentrated 

ammonia solution and slightly soluble in dilute acids. It does 

not show any significant magnetic properties. It has low 

thermal conductivity as compared to copper. Copper [I] oxide 

is used in the production of solar cell [4], use as a pigment in 

ceramics and in certain electronic devices also. It used in the 

production of photo detectors that detect light and convert it 
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into an electrical signal [5]. Cu2O [m; n] is a semiconductor 

with a direct band gap, making it suitable for applications in 

electronic devices [6]. It has studied for its potential use in the 

fabrication of field effect transistors and other semiconductor 

components [7]. The photo catalytic properties of Cu2O [m; 

n] make it useful in environmental applications. It has been 

explored for the degradation of organic pollutants and the 

reduction of carbon dioxide through photo catalytic reactions 

[8], contributing to sustainable energy and environmental 

technologies. Cu2O [m; n] has demonstrated sensitivity to 

various gases, such as carbon monoxide and ammonia. This 

property makes it applicable in gas sensors for monitoring air 

quality and detecting harmful gases [9]. 

 Due to its antimicrobial properties, Cu2O [m; n] has 

been considered for use in antifouling coatings. These 

coatings help prevent the growth of marine organisms on ship 

hulls, reducing drag and improving fuel efficiency [10]. 

Copper [I] oxide has been investigated for its potential as a 

high temperature superconductor, which could have 

applications in various industries, including energy 

transmission and medical imaging. Cu2O [m; n] has been 

studied for its use in battery electrodes, contributing to the 

development of next-generation batteries with improved 

energy storage capacity [11]. Copper [I] oxide serves as a 

catalyst in organic synthesis, promoting various chemical 

reactions [12]. It has applications in the production of fine 

chemicals and pharmaceuticals [13]. The unique properties of 

Cu2O nanoparticles make them attractive for applications in 

nanotechnology, including drug delivery [14-15], imaging 

and sensing. In the realm of electronics, it serves as a 

photovoltaic cell material due to its potential as a 

semiconductor [16]. Its fungicidal and bactericidal properties 

make it a vital component in the production of antifouling 

paints, used to prevent the growth of marine organisms on 

ship nulls [17-18]. It employed as a catalyst for variety of 

chemical reactions, including the decomposition of carbon 

monoxide and the synthesis of methanol [19].  

 It is utilized an electrode material in lithium-ion 

batteries and other energy storage systems due to its high 

theoretical capacity [20]. A topological index is a type of 

molecular descriptor which is a numerical value associated 

with a graph that captures certain structural properties of the 

molecular graph and describes topology of graph, analyze 

mathematical values and further investigate some 

physicochemical properties of a molecule. Some most 

significant types of topological indices are distance based, 

degree based and spectrum based topological indices [21]. 

These indices provide insights into various physicochemical 

properties, such as molecular size, shape, stability, and 

biological activity, without needing to know the specific 

atomic coordinates or detailed electronic structure of the 

molecule. They are particularly useful for high-throughput 

screening and virtual screening in drug discovery, as well as 

in quantitative structure-activity relationship (QSAR) studies. 

Quantitative structure-activity relationship (QSAR) is a 

computational technique used to predict the biological 

activity, toxicity, or other properties of chemical compounds 

based on their molecular structure [22]. Topological indices 

often used as molecular descriptors in QSAR studies to 

correlate chemical structure with biological activity [23]. In 

the pharmaceutical industry, topological indices used in 

virtual screening and drug design to identify potential drug 

candidates with desired properties.  

 Topological indices can used to predict various 

physicochemical properties of chemical compounds, such as 

boiling point, melting point, solubility, and partition 

coefficient. Topological indices employed to measure the 

similarity between chemical compounds or to cluster 

compounds based on structural similarity. This is useful in 

drug discovery, environmental chemistry, and toxicology. 

Topological indices used in teaching and research to analyze 

the structure-property relationships of chemical compounds 

and to develop new computational methods for molecular 

modeling and simulation. An irregularity index is a statistical 

value connected with a graph that measures the irregularity of 

graph. The irregularity index measures how much the degrees 

of vertices deviate from the average degree. A lower 

irregularity index indicates a more regular or balanced 

distribution of degrees, while a higher irregularity index 

suggests a more irregular or unbalanced distribution. A graph 

G is a regular if degree of all vertices is same otherwise it is 

called irregular [24]. His first Zagreb index [25] and the 

second Zagreb index [26] of a graph G denoted by M1 and M2 

respectively and defined as  

M1 (G) = ∑ (du +  dv)

uv ∊E (G)

,                 

M2 (G) = ∑ (du . dv).

uv ∊E(G)

                                           

The modification of first Zagreb index denoted by F (G), 

which called forgotten index [27] and defined as  

F (G) = ∑ (du
2  +  dv

2)

uv ∊E(G)

.                                                       

The Albertson index [28] which is also called third Zagreb 

index is denoted by Al (G) or IRR (G) and defined as  

IRR (G) = ∑ |dp −  dq|

pq ∊E(G)

.                                                    

The Bell’s degree variance is one of the most popular degree-

based irregularity indices which is denoted by VAR (G) [29] 

and defined as  

VAR (G) = ∑
M1(G)

s
pq ∊E(G)

−  (
2r

s
)

2

.                                        

The sigma index [30] is an important degree based 

topological index, which denoted by IRF (G) or σ (G) and 

formulated as  

IRF (G) = ∑ (dp  −  dq)2

pq ∊E(G)

.                                                

 Irregularity indices provide quantitative measures of 

the structural complexity of graphs. In chemistry, molecular 

graphs represent chemical compounds, and irregularity 

indices help quantify the complexity of their molecular 

structures. This complexity can related to various 

physicochemical properties or biological activities of the 

molecules. Irregularity indices allow for the differentiation 

between different molecular structures based on their 

topological features. By calculating irregularity indices for 

molecular graphs, chemists can compare and classify 

molecules according to their structural complexity. This is 

crucial in various fields such as drug design, where 

structurally diverse compounds need to evaluate for their 

potential biological activities. Irregularity indices can 

correlated with various properties or activities of molecules. 

By analyzing the relationship between irregularity indices 

and experimental data, such as biological activity or toxicity, 
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researchers can gain insights into the structure-activity 

relationships of chemical compounds. This information is 

valuable for predicting the properties of new compounds and 

optimizing their design.  

 

2. Preliminaries 

 Graph theory as a formal mathematical discipline 

not invented by a single individual but rather evolved over 

time through the contributions of many mathematicians. 

However, one of the key Figures credited with laying the 

foundation of graph theory is Leonhard Euler, and 18th 

century Swiss mathematician. In 1736, Euler published a 

paper titled “Solutio problematis and geometriam situs 

pertinentis” (Solution of a problem relating to the geometry 

of position), which is considered the starting point of graph 

theory. In this paper, Euler addressed the famous Seven 

Bridges of Konigsberg problem, which involved determining 

whether it was possible to walk through the city of 

Konigsberg and cross each of its seven bridges exactly once, 

returning to the starting point. Euler abstracted the problem 

to represent the landmasses as vertices and the bridges as 

edges, thus creating a mathematical structure that we now 

recognize as a graph. By analyzing the properties of this 

graph, Euler was able to prove that it was not possible to 

traverse all bridges exactly once, laying the foundation for the 

study of graphs and networks emerge until the 18th century. 

However, some precursor works laid the foundation for later 

developments.  

 Leonhard Euler (1707-1783): Euler often considered 

the father of graph theory. In 1736, he solved the famous 

Seven Bridges of Konigsberg problem, which considered one 

of the first problems in graph theory. Euler’s solution did not 

use the language of graphs as we know it today, but his 

method of abstracting the problem into a graph laid the 

groundwork for the formalization of graph theory [31]. 

Daniel Bernoulli (1700-1782): Euler’s colleague Daniel 

Bernoulli also contributed to early graph theory. He 

introduced the concept of the network in his work on the 

"brachistochrone" problem, which deals with finding the 

curve between two points in which a body acted upon only by 

gravity will move along the shortest path [32]. Eulerian paths: 

Euler’s work on the Seven Bridges problem led to the 

concepts of Eulerian paths and circuits. An Eulerian path is a 

path in a graph that visits every edge exactly once, while an 

Eulerian circuit is a closed path that visits every edge exactly 

once [33]. 

 The 19th century saw further development and 

refinement of graph theory concepts, building upon the 

foundation laid in the 18th century. Gustav Kirchhoff (1824-

1887): Kirchhoff, a German physicist, made significant 

contributions to the application of graph theory in electrical 

circuit analysis. His work on the laws governing electrical 

circuits, known as Kirchhoff’s laws, involved representing 

electrical networks as graphs. He introduced the concept of a 

graph’s “tree” in this context, which later became important 

in the study of spanning trees [34]. Topological Indices: 

Topological indices [35-41] used on chemical graphs for 

several reasons, primarily to quantify and analyze the 

structural properties of molecules. These indices provide 

numerical descriptors that capture certain topological features 

of molecular graphs, which in turn can correlated with 

various physical, chemical, and biological properties of 

molecules.  

3. Materials and Methods 

3.1. Materials  

 We needed some crystallographic structure and 

other relevant information for copper [I] oxide. We use 

following specific irregularity indices on chemical graph of 

copper [I] oxide. Let G1 and G2 be two graphs of copper [I] 

oxide, respectively. In Cu2O [m; n], m represents the number 

of unit cells in row and n represents the number of unit cells 

in column. The terms r and s define the number of edges and 

number of vertices respectively. Here for G1, r = 8mn & s =
7mn + 2m + 2n + 2 and for G2, r = 12mn & s = 8mn +
2m + 2n. 

IRDIF (G) = ∑ |
dp

dq

−  
dq

dp

|

pq ∊E(G)

,                               (1) 

IRR (G) = ∑ |dp −  dq|

pq ∊E(G)

,                                    (2)  

IRL (G) = ∑ |ln dp −  ln dq|

pq ∊E(G)

,                           (3) 

IRLF (G) = ∑
|dp −  dq|

√dp. dqpq ∊E(G)

,                                 (4) 

IRF (G) = ∑ (dp  −  dq)2,

pq ∊E(G)

                                (5) 

IRA (G) = ∑ (dp
−½ − dq

−½)
2

,

pq ∊E(G)

                           (6) 

IRB (G) = ∑ (√dp −  √dq)
2

,

pq ∊E(G)

                        (7) 

IRLA (G) = ∑ 2 (
|dp −  dq|

(dp +  dq)
)

pq ∊E(G)

,                      (8) 

IRLD1(G) = ∑ ln{1 + |dp − dq|},

pq ∊E(G)

               (9) 

IRGA (G) = ∑ ln
(dp +  dq)

2√dp. dqpq ∊E(G)

,                       (10) 

VAR (G) = ∑
M1(G)

s
pq ∊E(G)

−  (
2r

s
)

2

,                   (11) 

IR1 (G) = F (G)  −  
2r

s
 M1(G),                             (12) 

IR2 (G) = √
M2(G)

r
−

2r

s
,                                      (13) 

IRFW (G) =
IRF (G)

M2(G)
,                                             (14) 

IRC (G) = ∑ (
√dp .  dq

r
− 

2r

s
)

pq ∊E(G)

,                (15) 

M1 (G) = ∑ (du + dv),

uv ∊E (G)

                              (16) 

M2 (G) = ∑ (du . dv)

uv ∊E(G)

,                                   (17) 

F(G) = ∑ (du
2  +  dv

2)

uv ∊E(G)

.                                   (18) 

3.2. Methods 

3.2.1. Edge partition of 𝑮𝟏 ≈ 𝑪𝒖𝟐𝑶 [𝒎;  𝒏] 
 There are three partitions of edges in Cu2O [m; n] on 

the base of degree. We computed number of indices for each 
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number of edges. E(dp,dq) Shows the number of edges 

bounded by the vertices having degrees dp and dq , 

respectively and shown in Table 1. Different dimensional 

structures of copper [I] oxide are depicted in Figure 1-3. 

 

E(1,2) = {e = pq ∈ E (G)| dp = 1; dq = 2}, 

E(2,2) = {e = pq ∈ E (G)| dp = 2; dq = 2}, 

E(2,4) = {e = pq ∈ E (G)| dp = 2; dq = 4}. 

 

4. Main Results 

4.1. Computation of irregularity indices for copper [I] 

oxide 𝑮𝟏 ≈ 𝑪𝒖𝟐𝑶 [𝒎;  𝒏] 
Theorem 1: Let G be a graph of copper [I] oxide then its 

irregularity index IRDIF computed as 

Proof: We know that, 

IRDIF (G1) = ∑ |
dp

dq
−  

dq

dp
|pq∈E .  

IRDIF (Cu2O [m;  n]) = (4m + 4n − 4) |
1

2
−

2

1
| + (4mn −

4m − 4n + 4) |
2

2
−

2

2
| + (4mn) |

2

4
−

4

2
|  

= (4m + 4n − 4) |−
3

2
| + (4mn − 4m −  4n + 4)|0| +

(4mn) |−
3

2
|.  

=
3

2
(4m + 4n − 4) +

3

2
 (4mn) = 6m + 6n − 6 + 6mn. 

⇒ IRDIF (Cu2O [m;  n]) = 6mn + 6m + 6n − 6.  
 

Theorem 2: Let G be a graph of copper [I] oxide then its 

irregularity index IRR computed as 

Proof: We know that, 

IRR (G1) = ∑ |dp − dq|.pq∈E   

IRR (Cu2O [m;  n]) = (4m + 4n − 4)|1 − 2| + (4mn −
4m − 4n + 4)|2 − 2| + (4mn)|2 − 4|  
= (4m + 4n − 4)|−1| + (4mn − 4m − 4n + 4)|0| +
(4mn)|−2|.      
⇒ IRR (Cu2O [m;  n]) = 8mn + 4m + 4n − 4.  

 

Theorem 3: Let G be a graph of copper [I] oxide then its 

irregularity index IRL computed as 

Proof: We know that, 

IRL (G1) = ∑ |ln dp − ln dq|.pq∈E   

IRL (Cu2O [m;  n]) = (4m + 4n − 4)|ln 2 − ln 1| +
(4mn − 4m − 4n + 4)|ln 2 − ln 2| + (4mn)|ln 4 − ln 2|.  
= (4m + 4n − 4)|ln 2| + (4mn − 4m − 4n + 4)|0| +
(4mn)|ln 2|.  
= (4m + 4n − 4)|ln 2| + (4mn)|ln 2|.  
⇒ IRL (Cu2O [m;  n]) = (4mn + 4m + 4n − 4)|ln 2|.  
 

Theorem 4: Let G be a graph of copper [I] oxide then its 

irregularity index IRLF computed as 

Proof: We know that, 

IRLF (G1) = ∑
|dp−dq|

√(dp.dq)
 pq∈E .  

IRLF (Cu2O [m;  n]) = (4m + 4n − 4)
|2−1|

√2
+ (4mn −

4m − 4n + 4)
|2−2|

√4
+ (4mn)

|4−2|

√8
 = (4m + 4n − 4)

1

√2
+

(4mn)
2

2√2
 . 

⇒ IRLF (Cu2O [m;  n]) = (4mn + 4m + 4n − 4)
1

√2
 .  

  

Theorem 5: Let G be a graph of copper [I] oxide then its 

irregularity index IRF computed as 

Proof: We know that, 

IRF (G1) = ∑ (dp − dq)
2

pq∈E .  

IRF (Cu2O [m;  n]) = (4m + 4n − 4)(2 − 1)2 + (4mn −
4m − 4n + 4)(2 − 2)2 + 4mn(4 − 2)2 = 4m + 4n − 4 +
4mn(2)2.  
⇒ IRF (Cu2O [m;  n]) = 16mn + 4m + 4n − 4.  

 

Theorem 6: Let G be a graph of copper [I] oxide then its 

irregularity index IRA computed as 

Proof: We know that, 

IRA (G1) = ∑ (dp
−1

2 −  dq
−1

2)
2

.pq∈E   

IRA (Cu2O [m;  n]) = (4m + 4n − 4) (
1

√2
−

1

√1
)

2

+

(4mn − 4m − 4n + 4)  

+(4mn) (
1

√4
−

1

√2
)

2

  

= (4m + 4n − 4) (
1−√2

√2
)

2

+ (4mn) (
1−√2

2
)

2

.  

= (4m + 4n − 4)
(1−√2)

2

2
+ (4mn)

(1−√2)
2

4
  

= (2mn + 4m + 4n − 4)
(1−√2)

2

2
.  

⇒ IRA (Cu2O [m;  n]) = (mn + 2m + 2n − 2)(1 − √2)
2

.  

 

Theorem 7: Let G be a graph of copper [I] oxide then its 

irregularity index IRB computed as 

Proof: We know that, 

IRB (G1) = ∑ (√dp − √dq)
2

pq ∈E .  

IRB (Cu2O [m;  n]) = (4m + 4n − 4)(√2 − √1 )
2

+

(4mn − 4m − 4n + 4) +4mn(√4 − √2)
2
  

(√2 − √2)
2

+ 4mn(√4 − √2)
2
  

= (4m + 4n − 4)(√2 − 1)
2

+ 8mn(√2 − 1)
2

. 

⇒ IRB (Cu2O [m;  n]) = (8mn + 4m + 4n − 4)(√2 − 1)
2

.  

Theorem 8: Let G be a graph of copper [I] oxide then its 

irregularity index IRLA computed as 

Proof: We know that,  

IRLA (G1) = ∑ 2
|dp−dq|

(dp+dq)pq ∈E .   

IRLA (Cu2O [m;  n]) = 2(4m + 4n − 4)
|2−1|

(2+1)
+ 2(4mn −

4m − 4n + 4)
|2−2|

(2+2)
+ 2(4mn)

|4−2|

(4+2)
 = 

(4m + 4n − 4)
2

3
+ (8mn)

2

6
.   

⇒ IRLA (Cu2O [m;  n]) =
2

3
(4mn + 4m + 4n − 4).  

 

Theorem 9: Let G be a graph of copper [I] oxide then its 

irregularity index 𝐼𝑅𝐿𝐷1 computed as 

Proof: We know that, 

IRLD1 (G1) = ∑ ln{1 + |dp − dq|} .pq ∈E   

 IRLD1(Cu2O [m;  n]) = (4m + 4n − 4) ln{1 + |2 − 1|} +
(4mn − 4m − 4n + 4)  

ln{1 + |2 − 2|} + (4mn) ln{1 + |4 − 2|}.  
= (4m + 4n − 4) ln 2 + (4mn − 4m − 4n + 4)  ln 1 +
(4mn) ln{1 + 2}.  
⇒ IRLD1 (Cu2O [m;  n]) = (4m + 4n − 4) ln 2 +
(4mn) ln 3.  
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Theorem 10: Let G be a graph of copper [I] oxide then its 

irregularity index IRGA computed as 

Proof: We know that, 

IRGA (G1) = ∑ ln (
(dp+dq)

2√dp.dq
)pq ∈E .  

IRGA (Cu2O [m;  n]) = (4m + 4n − 4) ln (
1+2

2√2  .  1
) +

(4mn − 4m − 4n + 4)  

ln (
2+2

2√2 .  2
) + (4mn) ln (

2+4

2√2  .4
).  

= (4m + 4n − 4) ln
3

2√2
+ (4mn − 4m − 4n + 4) ln 1 +

(4mn) ln
6

4√2
 .  

⇒ IRGA (Cu2O [m;  n]) = (4mn + 4m + 4n − 4) ln
3

2√2
 .  

 

Theorem 11: Let G be a graph of copper [I] oxide then its 

irregularity index VAR computed as 

Proof: We know that, 

VAR (G1) =
M1(G)

s
− (

2r

s
)

2

 & M1 (G1) = ∑ (dp + dq)pq ∈E .  

M1  (Cu2O [m;  n]) = (4m + 4n − 4)(1 + 2) + (4mn −
4m − 4n + 4)(2 + 2) + 4mn(2 + 4)  

= 3(4m + 4n − 4) + 4(4mn − 4m − 4n + 4) + 6(4mn).  
= 12m + 12n − 12 + 16mn − 16m − 16n + 16 + 24mn.  
⇒ M1 (Cu2O [m;  n]) = 40mn − 4m − 4n + 4.  

VAR (Cu2O [m;  n]) =
40mn−4m−4n+4

s
−

(
2r

s
)

2 40mn−4m−4n+4

s
− (

4r2

s2 ).  

=
40mn−4m−4n+4

7mn+2m+2n+2
−

4(8mn)

(7mn+2m+2n+2)2  

(7mn+2m+2n+2)(40mn−4m−4n+4)−4(64m2n2)

(7mn+2m+2n+2)2 .  

=
24m2n2+52m2n+52mn2+92mn−8m2−8n2+8

(7mn+2m+2n+2)2  .  

 

Theorem 12: Let G be a graph of copper [I] oxide then its 

irregularity index IR1 computed as 

Proof: We know that,    

IR1 (G1) = F (G) −
2r

s
 M1 (G1).  

IR1 (G1) = ∑ (dp
2 + dq

2)pq ∈E −
2r

s
∑ (dp + dq)pq ∈E .  

IR1 (Cu2O [m;  n]) = (4m + 4n − 4)(12 + 22) + (4mn −

4m − 4n + 4)(22 + 22) + 4mn(22 + 42) −
2r

s
(40mn −

4m − 4n + 4).   
= (4m + 4n − 4)(1 + 4) + (4mn − 4m − 4n + 4)(4 +
4) + 4mn(4 + 16)  

−
2(8mn)

7mn+2m+2n+2
(40mn –  4m –  4n +  4).  

= 5(4m + 4n − 4) + 8(4mn − 4m − 4n + 4) +

20(4mn) −
16mn

7mn+2m+2n+2
(40mn − 4m − 4n + 4)  

= 112mn − 12m − 12n + 12 +
−640m2n2+64m2n+64mn2−64mn

7m+2m+2n+2
 .   

=
(7mn+2m+2n+2)(112mn−12m−12n+12)−640m2n2+64m2n+64mn2−64mn 

7m+2m+2n+2
 .  

=
784m2n2−84m2n−84mn2+84mn+224m2n−24m2−24mn+24m+224mn2

−24mn−24n2+24n+224mn−24m−24n+24−640m2n2+64m2n+64mn2−64mn

7mn+2m+2n+2
 .  

⇒ IR1 (Cu2 [m;  n]) =
144m2n2+204m2n+204mn2+196mn−24m2−24n2+24

7m+2m+2n+2
 .  

 

Theorem 13: Let G be a graph of copper [I] oxide then its 

irregularity index IR2 computed as 

Proof: We know that, 

IR2 (G1) = √
 M2(G)

r
−

2r

s
 & M2 (G1) = ∑ (dp. dq)pq ∈E .  

M2 (Cu2O [m;  n]) = (4m + 4n − 4)(1 . 2) + (4mn −
4m − 4n + 4)(2 . 2) + (4mn)(2 . 4) = 2(4m + 4n − 4) +
4(4mn − 4m − 4n + 4) + 8(4mn).  
= 8m + 8n − 8 + 16mn − 16m − 16n + 16 + 32mn.  
⇒ M2 (Cu2O [m;  n]) = 48mn − 8m − 8n + 8.  

IR2 (Cu2O [m;  n]) = √
48mn−8m−8n+8

8mn
−

2(8mn)

7mn+2m+2n+2
 .  

⇒ IR2 (Cu2O [m;  n]) = √
6mn−m−n+1

mn
−

16mn

7mn+2m+2n+2
 .   

 

Theorem 14: Let G be a graph of copper [I] oxide then its 

irregularity index IRFW computed as 

Proof: We know that, 

IRFW (G1) =
IRF (G)

M2 (G)
 .  

IRFW (Cu2O [m;  n]) =
16mn+4m+4n−4

48mn−8m−8n+8
 .  

⇒ IRFW (Cu2O [m;  n]) =
4mn+m+n−1

12mn−2m−2n+2
 .  

 

Theorem 15: Let G be a graph of copper [I] oxide then its 

irregularity index IRC computed as 

Proof: We know that, 

IRC (G1) = ∑
√dp.dq

rpq ∈E −  
2r

s
 .  

IRC (Cu2O [m;  n]) =
(4m+4n−4)√1 .  2 + (4mn−4m−4n+4)√2 .  2 +(6mn)√2 .  4

r
−

2r

s
 .  

=
(4m+4n−4)√2+2(4mn−4m−4n+4)+6mn(2√2)

8mn
−

2(8mn)

7mn+2m+2n+2
 .  

=
(4m+4n−4)√2+8mn−8m−8n+8+12mn√2

8mn
−

16mn

7mn+2m+2n+2
 .  

⇒ IRC (Cu2O [m;  n]) =
(12mn+4m+4n−4)√2+8mn−8m−8n+8

8mn
−

16mn

7mn+2m+2n+2
 .  

 

5. Numerical Computations of Irregularity Indices of 

Copper [I] 

 We have computed the following numerical 

computation from Table 2 for irregularity indices of copper 

[I] shown in Figure 4-8. 

 

6. Regression Model 

 A regression model is a statistical method that 

describes the relationship between one dependent variable 

and one or more independent variables.  

P = a + bX 

a =
(∑ y)(∑ x2) − (∑ x)(∑ xy)

n(∑ x2) − (∑ x)2
 

b =
n(∑ xy) − (∑ x)(∑ y)

n(∑ x2) − (∑ x)2
 

 Where P is the dependent variable and X is the 

independent variable. The variable P represents the physical 

or chemical properties and X represents the irregularity 

indices. The term “a” is the intercept and the “b” is slope. We 

computed physicochemical properties of copper [I] Oxide by 

using irregularity indices. Boiling point of copper [I] oxide is 

1800oC. Enthalpy of copper [I] oxide is –168.6 kJ/mol. Molar  
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Figure 1. Cu2O [1; 1] 

 

 

Figure 2.  Cu2O [2; 2] 
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Figure 3.  Cu2O [4; 4] 

 

Figure 4. IRDIF, IRL and IRF of Cu2O [m; n] 
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Figure 5. IRR, IRLF and IR1 of Cu2O [m; n] 

 

Figure 6. IR2, IRFW and IRC of Cu2O [m; n] 
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Figure 7. IRB, IRGA and VAR of Cu2O [m; n] 

 

Figure 8. IRA, IRLA and IRLD_1 of Cu2O [m; n] 
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Figure 9. Comparison of boiling point of Cu2O [m; n] with boiling point computed from IRDIF, IRR, IRL, IRLF, IRF, IRB and IRLA. 

 

Figure 10. Comparison of boiling point of Cu2O [m; n] with boiling point computed from IRLD1, VAR, IR1, IR2, IRFW and IRC. 

 

1799.992

1799.994

1799.996

1799.998

1800

1800.002

1800.004

1800.006

IRDIF IRR IRL IRLF IRF IRB IRLA

BP BP from Index

1799.98

1799.985

1799.99

1799.995

1800

1800.005

1800.01

1800.015

1800.02

IRLD1 VAR IR1 IR2 IRFW IRC

BP BP from Index



International Journal of Chemical and Biochemical Sciences (IJCBS), 25(19) (2024): 1042-1060 

 

Khan et al., 2024    1052 
 

 

Figure 11. Comparison of boiling point of Cu2O [m; n] with boiling point computed from IRA and IRGA. 

 

Figure 12. Comparison of enthalpy of Cu2O [m; n] with enthalpy computed from IRDIF, IRR, IRL, IRLF, IRF, IRB and IRLA. 
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Figure 13. Comparison of enthalpy of Cu2O [m; n] with enthalpy computed from IRLD1, VAR, IR1, IR2, IRFW and IRC. 

 

Figure 14. Comparison of enthalpy Cu2O [m; n]  of with enthalpy computed from IRA and IRGA. 
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Figure 15. Comparison of molar volume of Cu2O [m; n] with molar volume computed from IRDIF, IRR, IRL, IRLF, IRF, IRB and 

IRLA. 

 

Figure 16. Comparison of molar volume of Cu2O [m; n] with molar volume computed from IRLD1, IRGA, VAR, IR1, IR2, IRFW and 

IRC. 
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Figure 17. Comparison of molar volume of Cu2O [m; n] with molar volume computed from IRA. 

 

Figure 18. Comparison of molar mass of Cu2O [m; n] with molar mass computed from IRDIF, IRR, IRL, IRLF, IRF, IRB and IRLA. 
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Figure 19. Comparison of molar mass of Cu2O [m; n] with molar mass computed from IRLD1, IRGA, VAR, IR1, IR2, IRFW and IRC. 

 

Figure 20. Comparison of molar mass of Cu2O [m; n] with molar mass computed from IRA. 

 

 

143.0892

143.0894

143.0896

143.0898

143.09

143.0902

143.0904

143.0906

143.0908

IRLD1 IRGA VAR IR1 IR2 IRFW IRC

MM MM from Index

143.07

143.072

143.074

143.076

143.078

143.08

143.082

143.084

143.086

143.088

143.09

143.092

IRA

MM MM from Index



International Journal of Chemical and Biochemical Sciences (IJCBS), 25(19) (2024): 1042-1060 

 

Khan et al., 2024    1057 
 

 

Table 1. Edge partition of G1 ≈ Cu2O [m;  n] 

 

Number of edges (𝐝𝐩, 𝐝𝐪) Number of indices 

(1, 2) 4m + 4n – 4 

(2, 2) 4mn – 4m – 4n + 4 

(2, 4) 4mn 

 

 

 

 

Table 2. Numerical computation of irregularity indices of copper [I] oxide for n = 1, 2, 3, 4 & m = 1, 2, 3, 4 

 

Irregularity Indices n, m = 1 n, m = 2 n, m = 3 n, m = 4 

IRDIF (G1) 12 42 84 138 

IRR (G1) 12 44 92 156 

IRL (G1) 5.54517 19.40812 38.81624 63.76954 

IRLF (G1) 5.65685 19.79898 39.59797 65.05382 

IRF (G1) 20 76 164 284 

IRA (G1) 0.51471 1.71572 3.25988 5.14718 

IRB (G1) 2.05887 7.54920 15.78470 26.76537. 

IRLA (G1) 5.33333 18.66667 37.33333 61.33333 

IRLD1 (G1) 7.16703 25.89556 53.41298 89.71930 

IRGA (G1) 0.47113 1.64896 3.29792 5.41801 

VAR (G1) 1.25443 1.05817 0.91752 0.82982 

IR1 (G1) 55.69231 162.73684 312.15584 502.83077 

IR2 (G1) 1.00530 0.60708 0.46320 0.38926 

IRFW (G1) 0.5 0.45238 0.41837 0.39888 

IRC (G1) 1.59766 1.21744 1.08847 1.02395 

 

 

 

 

Table 3. Physicochemical properties of copper [I] oxide 

 

Compound BP EV MV MM 

Cu2O 1800 –168.6 23.85 143.09 

 

 

 

 

Table 4. Computation of boiling point of copper [I] oxide from each irregularity indices 

 

Irregularity 

 Indices 

𝐂𝐮𝟐𝐎  a b 

IRDIF 12 2400 –50 

IRR 12 2400 –50  

IRL 5.54517 2442.51935 –115.86957 

IRLF 5.65685 2430.93810 –111.53546 

IRF 20 2133.33333 –16.66667 

IRA 0.51471 2225.02825 –825.78445 

IRB 2.05887 2171.10755 –180.24545 

IRLA 5.33333 2466.66361 –125 

IRLD1  7.16703 2683.80458 –123.31520 

IRGA 0.47113 2208.09537 –866.34146 

VAR 1.25443 2072.37349 –217.13302 

IR1 55.69231 2040.26547 –4.31416 

IR2 1.00530 2037.93516 –236.67222 

IRFW 0.5 2080.016 –560 

IRC 1.59766 2017.28536 –136.00274 
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Table 5. Computation of enthalpy of copper [I] oxide from each irregularity indices 

 

Irregularity Indices 𝐂𝐮𝟐𝐎  a b 

IRDIF 12 –132.6 –3 

IRR 12 –132.6 –3 

IRL 5.54517 –130.04929 –6.95217 

IRLF 5.65685 –130.74352 –6.69213 

IRF 20 –148.6 –1 

IRA 0.51471 –143.09222 –49.54707 

IRB 2.05887 –146.33440 –10.81472 

IRLA 5.33333 –128.59979 –7.5 

IRLD1  7.16703 –115.57185 –7.39891 

IRGA 0.47113 –144.10644 –51.98056 

VAR 1.25443 –152.25697 –13.02801 

IR1 55.69231 –154.18407 –0.25885 

IR2 1.00530 –154.32513 –14.20033 

IRFW 0.5 –151.80123 –33.60006 

IRC 1.59766 –155.56267 –8.16017 

 

 

 

Table 6. Computation of molar volume of copper [I] oxide from each irregularity indices 

 

Irregularity Indices 𝐂𝐮𝟐𝐎  a b 

IRDIF 12 –9.912 2.8135 

IRR 12 –9.912 2.8135 

IRL 5.54517 –12.30439 6.51999 

IRLF 5.65685 –11.65298 6.27610 

IRF 20 5.09333 0.93783 

IRA 0.51471 –0.069 46.46665 

IRB 2.05887 2.96815 10.14242 

IRLA 5.33333 –13.66335 7.03375 

IRLD1  7.16703 –25.88164 6.93895 

IRGA 0.47113 0.88294 48.74905 

VAR 1.25443 8.52326 12.21810 

IR1 55.69231 10.33026 0.24276 

IR2 1.00530 10.46194 13.31756 

IRFW 0.5 8.09447 31.51129 

IRC 1.59766 11.62326 7.65288 

 

 

Table 7. Computation of molar mass of copper [I] oxide from each irregularity indices 

 

Irregularity Indices 𝐂𝐮𝟐𝐎  a b 

IRDIF 12 –47.545 15.88625 

IRR 12 –47.545 15.88625 

IRL 5.54517 –61.05335 36.81466 

IRLF 5.65685 –57.37534 35.43761 

IRF 20 37.18167 5.29542 

IRA 0.51471 8.03224 262.37218 

IRB 2.05887 25.18203 57.26849 

IRLA 5.33333 –68.72671 39.71563 

IRLD1  7.16703 –137.7164 39.18032 

IRGA 0.47113 13.40769 275.25842 

VAR 1.25443 56.54859 68.98861 

IR1 55.69231 66.75165 1.37072 

IR2 1.00530 67.49524 75.19670 

IRFW 0.5 54.12763 177.92602 

IRC 1.59766 74.05249 43.21148 
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Table 8. Computation of molar mass of copper [I] oxide from each irregularity indices 

 

 BP EV MV MM 

IRDIF (G1) 2400 – 50[IRDIF(G1)] –132.6 – 3[IRDIF(G1)] –9.9 + 2.8[IRDIF(G1)] – 47.5 + 15.8[IRDIF(G1)] 

IRR (G1) 2400 – 50[IRR(G1)] –132.6 – 3[IRR(G1)] –9.9 + 2.8[IRR(G1)] – 47.5 + 15.8[IRR(G1)] 

IRL (G1) 2442.51 – 115.8[IRL(G1)] –130.0 – 6.9[IRL(G1)] –12.3 + 6.5[IRL(G1)] –61.0+36.8[IRL(G1)] 

IRLF (G1) 2430.9 – 111.5[IRLF(G1)] –130.7 – 6.6[IRLF(G1)] –11.6 + 6.2[IRLF(G1)] –57.3 + 35.4[IRLF(G1)] 

IRF (G1) 2133.3 – 16.6[IRF(G1)] –148.6 – 1[IRF(G1)] 5.1 + 0.9[IRF(G1)] 37.1 + 5.3[IRF(G1)] 

IRA (G1) 2225.0 – 825.7[IRA(G1)] –143.1 – 49.5[IRA(G1)] –0.06 + 46.4[IRA(G1)] 8.0 + 262.3[IRA(G1)] 

IRB (G1) 2171.1 – 180.2[IRB(G1)] –146.3 – 10.8[IRB(G1)] 2.9 + 10.1[IRB(G1)] 25.1 +57.2[IRB(G1)] 

IRLA (G1) 2466.6 – 125[IRLA(G1)] –128.6 – 7.5[IRLA(G1)] –13.6 + 7.0[IRLA(G1)] –68.7 + 39.7[IRLA(G1)] 

IRLD1 (G1) 2683.8 – 

123.3[IRLD1(G1)] 

–115.5 – 

7.3[IRLD1(G1)] 

–25.8 + 6.9[IRLD1(G1)] –137.7 + 39.1[IRLD1(G1)] 

IRGA (G1) 2208.1 – 

866.3[IRGA(G1)] 

–144.1 – 

51.9[IRGA(G1)] 

0.8 + 48.7[IRGA(G1)] 13.4 + 275.2[IRGA(G1)] 

VAR (G1) 2072.3 – 217.1[VAR(G1)] –152.2 – 13.0[VAR(G1)] 8.5 + 12.2[VAR(G1)] 56.5 + 68.9[VAR(G1)] 

IR1 (G1) 2040.2 – 4.3[IR1(G1)] –154.1 – 0.2[IR1(G1)] 10.3 + 0.2[IR1(G1)] 66.7 + 1.3[IR1(G1)] 

IR2 (G1) 2037.9 – 236.6[IR2(G1)] –154.3 – 14.2[IR2(G1)] 10.4 + 13.3[IR2(G1)] 67.4 + 75.1[IR2(G1)] 

IRFW (G1) 2080.0 – 560[IRFW(G1)] –151.8 – 

33.6[IRFW(G1)] 

8.1 + 31.5[IRFW(G1)] 54.1 + 177.9[IRFW(G1)] 

IRC (G1) 2017.2 – 136.0[IRC(G1)] –155.5 – 8.1[IRC(G1)] 11.6 + 7.6[IRC(G1)] 74.0 + 43.2[IRC(G1)] 

 

 

 

Volume of copper [I] oxide is 23.85 cm3/mol. Molar mass of 

copper [I] oxide is 143.09 g/mol.         

 

7. Computation of physicochemical properties of 

copper [I] oxide by using each irregularity indices 

 In Table 8, we have computed BP, EV, MV and MM 

using all irregularity indices. Comparison of physiochemical 

properties depicted in Figures 9-20. 

 

8. Conclusions 

 

 In this study, we have computed irregularity indices 

for copper [I] oxide Cu2O [m; n]  for n = 1, 2, 3, 4 and m = 1, 

2, 3, 4. We have generated the nth term formula. We have also 

computed physicochemical properties like boiling point, 

enthalpy, molar volume and molar mass of and from 

calculated values of irregularity indices by using regression 

models. We have drawn the comparison of experimental 

values of boiling point, enthalpy, molar volume and molar 

mass of copper [I] oxide with the theoretical values of the 

boiling point, enthalpy, molar volume and molar mass 

calculated with the help of irregularity indices. 
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